CS 7545: Machine Learning Theory Fall 2021

Lecture 12: Boosting and SVM
Instructor: Santosh Vempala Lecture date: 10/25-27/2021

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Boosting

Let ‘H be a hypothesis class of Boolean valued functions.

Definition 12.1 (Weak Learner). A hypothesis h is a weak learner with v > 0 if

Pr(h(z) = £(x)) > 1/2+7

where £(x) is the true labeling function over D.

Remark 12.2. Random guessing gives a 1/2 correctness. The performance of a weaker learner is slightly
better than random guessing.

Definition 12.3 (Strong Learner). For any € > 0, a hypothesis h is a strong learner if

%r(h(x) =/{(z)) <e

where £(x) is the true labeling function over D.

Suppose we know how to get a weak learner h € H for any distribution D, can we create a strong learner?

Algorithm 1 Boosting

Initialize w; < 1 for each sample x; € S
fort=1,...,T

h; + the concept that correctly classifies 1/2 + « fraction of the current total weight
1
—
2

Increase the weight of each example mis-classified by h; by a factor of

Output b = MAJ(hy, ha, ..., hr)

Bound on number of Mistakes:
e Let the number of error made by the final majority hypothesis be m.

e If MAJ(hy, ha, ..., hr) misclassifies z;, at least T//2 h;’s must misclassify z;. So,

1 Z z
= 1 2 2
wiz(f”) :( + 7) . (12.1)
2= 1—2y
e Let W; = total weight at the ¢-th step. Then, Wy = n and
1 T+ 1
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Sl

T
2n.

e From (12.1) and (12.2), m ( =22 < Wr < n(1+2v)T which gives m < (1 — 442
1-2v

OForT:l;—z)",m<1:>m:0.

So, h(x;) = (x;) for all i € [n]. To guarantee (e, §)-PAC learning, we need

1 1 1
n=0 ( (VC—dim(MAJk(H)) log — + log 6)> )
€ €

where MAJy(H) is the hypothesis class of majority of k concepts from H.

Theorem 12.4. If a hypothesis class H has VC-dim d, then majority of k concepts from H has VC-dim at
most 2kdlog(kd).

Proof. The number of ways concepts in H can label m points is at most m¢. The number of ways majority
of k concepts in H can label m points is at most mP®. Let d be the VC-dim of class of majority of k concepts
from H. Then, 2¢ < d* = d < 2kdlog(kd). O

Corollary 12.5. n = O (£ (Tdlog(T'd)log + + log %)) for T = 11;—2" examples imply (¢,0)-PAC learning.

12.2 Support Vector Machines

Given data points {z;}, we want to find a separator w that minimizes the Hinge Loss, which is defined as

mian
i=1
st. w-ax; >1—¢ if l(a;) =1
€; ZO

If OPT = 0, then there exists a perfect classifier. However, the Hinge Loss does not guarantee anything
about the margin of the classifier. In practice, it might be preferable to have a classifier with a small amount
of error but a large margin rather than a perfect classifier with a small margin. Support Vector Machines
deal with this issue by regularizing the Hinge Loss with margin. Recall that the margin for a vector w* is
defined as v = min, I‘\Z *ﬂ This implies ||w*| = min, ‘“’;72“ < 712 The Support Vector Machine solves the
following convex optimization problem

m
min ||w||® + CZ €
i=1

st. w-ax; >1—¢ if b(a;) =1
67,20

Here c is the relative weight of Hinge Loss. The choice of ¢ depends on the data or the application.

Theorem 12.6. The number of mistakes made by the Perceptron algorithm is

1
#mistakes < min (2 + 2 (Hinge Loss of w))
w ’yw
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Proof. Consider the potential w - w*. When the algorithm makes a mistake,
wew* —wew () (o wt) > wewt + 1 — €,
where £(z;)(w* - x) > 1 —¢; for all . After M mistakes,

wowt =M= ¢>M-L,

where L is the Hinge Loss of w*. When the algorithm makes a mistake,
wew<—w-w~+ (x; @) + 20(z;) (w- ;) <w-w+ 1L

After M mistakes, ||w||> < M. Using Cauchy Schwarz, |w-w*| < ||w]|-|w*||, which implies M —L < [[w*|| v/]M.
On squaring both sides,

(M —L)? < |w*|?M = M < ||w*||> + 2L < +2L.

2
w*

12.3 Random Projections

Given samples in R%, consider the random projection matrix R : R — R*_ where each entry r;; is sampled
independently from N(0,1/vk). Let 2/ = RTz. Then E[||2/|] = ||z|*.

Theorem 12.7. For a random projection matriz R : R — R* and z € RY,

(2=

Pr(|[|[RT2|” = 2|®| > € |l]|?) < 2e 3

Therefore, k = O (E% log %) preserves the lengths of m vectors.

Theorem 12.8. For a random projection matriz R : R? — R* and z,y € R?,
a2
Pr(|(RTz)- (Ry) —x-y| > e|lz| ly]]) < 2e*.

Consider the setting when we are trying to learn a halfspace with margin v in R%. If we first randomly

project to R¥ for k = O (’%2 log %), we get a margin on at least v/2 w.h.p., and to learn the halfspace in

RE, we need only m = O(é log% + élog %) samples. Therefore,

1 1
k:0<,y210g,y€5>’ and

1 1 1
m=0|—log—log—|.
€y? ved €



