Lecture 12: Boosting and SVM

Instructor: Santosh Vempala
Lecture date: 10/25-27/2021

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Boosting

Let \mathcal{H} be a hypothesis class of Boolean valued functions.
Definition 12.1 (Weak Learner). A hypothesis h is a weak learner with $\gamma>0$ if

$$
\underset{D}{\operatorname{Pr}}(h(x)=\ell(x)) \geq 1 / 2+\gamma
$$

where $\ell(x)$ is the true labeling function over D.
Remark 12.2. Random guessing gives a $1 / 2$ correctness. The performance of a weaker learner is slightly better than random guessing.

Definition 12.3 (Strong Learner). For any $\epsilon>0$, a hypothesis h is a strong learner if

$$
\underset{D}{\operatorname{Pr}}(h(x)=\ell(x)) \leq \epsilon
$$

where $\ell(x)$ is the true labeling function over D.
Suppose we know how to get a weak learner $h \in \mathcal{H}$ for any distribution D, can we create a strong learner?

```
Algorithm 1 Boosting
    Initialize \(w_{i} \leftarrow 1\) for each sample \(x_{i} \in S\)
    for \(t=1, \ldots, T\)
        \(h_{i} \leftarrow\) the concept that correctly classifies \(1 / 2+\gamma\) fraction of the current total weight
        Increase the weight of each example mis-classified by \(h_{i}\) by a factor of \(\frac{\frac{1}{2}+\gamma}{\frac{1}{2}-\gamma}\)
    Output \(\hat{h}=\operatorname{MAJ}\left(h_{1}, h_{2}, \ldots, h_{T}\right)\)
```

Bound on number of Mistakes:

- Let the number of error made by the final majority hypothesis be m.
- If $\operatorname{MAJ}\left(h_{1}, h_{2}, \ldots, h_{T}\right)$ misclassifies x_{i}, at least $T / 2 h_{i}$'s must misclassify x_{i}. So,

$$
\begin{equation*}
w_{i} \geq\left(\frac{\frac{1}{2}+\gamma}{\frac{1}{2}-\gamma}\right)^{\frac{T}{2}}=\left(\frac{1+2 \gamma}{1-2 \gamma}\right)^{\frac{T}{2}} \tag{12.1}
\end{equation*}
$$

- Let $W_{t}=$ total weight at the t-th step. Then, $W_{0}=n$ and

$$
\begin{equation*}
W_{t+1} \leq W_{t} \cdot\left[\left(\frac{1}{2}-\gamma\right) \cdot\left(\frac{\frac{1}{2}+\gamma}{\frac{1}{2}-\gamma}\right)+\left(\frac{1}{2}+\gamma\right)\right]=W_{t} \cdot(1+2 \gamma) \tag{12.2}
\end{equation*}
$$

- From (12.1) and (12.2), $m\left(\frac{1+2 \gamma}{1-2 \gamma}\right)^{\frac{T}{2}} \leq W_{T} \leq n(1+2 \gamma)^{T}$ which gives $m \leq\left(1-4 \gamma^{2}\right)^{\frac{T}{2}} n$.
- For $T=\frac{\ln n}{\gamma^{2}}, m<1 \Rightarrow m=0$.

So, $\hat{h}\left(x_{i}\right)=\ell\left(x_{i}\right)$ for all $i \in[n]$. To guarantee (ϵ, δ)-PAC learning, we need

$$
n=O\left(\frac{1}{\epsilon}\left(\mathrm{VC}-\operatorname{dim}\left(\operatorname{MAJ}_{k}(\mathcal{H})\right) \log \frac{1}{\epsilon}+\log \frac{1}{\delta}\right)\right)
$$

where $\operatorname{MAJ}_{k}(\mathcal{H})$ is the hypothesis class of majority of k concepts from \mathcal{H}.
Theorem 12.4. If a hypothesis class \mathcal{H} has VC-dim d, then majority of k concepts from \mathcal{H} has VC-dim at most $2 k d \log (k d)$.

Proof. The number of ways concepts in \mathcal{H} can label m points is at most m^{d}. The number of ways majority of k concepts in \mathcal{H} can label m points is at most $m^{k d}$. Let \hat{d} be the VC-dim of class of majority of k concepts from \mathcal{H}. Then, $2^{\hat{d}} \leq \hat{d}^{k d} \Rightarrow \hat{d} \leq 2 k d \log (k d)$.

Corollary 12.5. $n=O\left(\frac{1}{\epsilon}\left(T d \log (T d) \log \frac{1}{\epsilon}+\log \frac{1}{\delta}\right)\right)$ for $T=\frac{\ln n}{\gamma^{2}}$ examples imply $(\epsilon, \delta)-P A C$ learning.

12.2 Support Vector Machines

Given data points $\left\{x_{i}\right\}$, we want to find a separator w that minimizes the Hinge Loss, which is defined as

$$
\begin{aligned}
& \min \\
& \sum_{i=1}^{m} \epsilon_{i} \\
& \text { s.t. } \quad w \cdot x_{i} \geq 1-\epsilon_{i} \text { if } \ell\left(x_{i}\right)=1 \\
& w \cdot x_{i} \leq-1+\epsilon_{i} \quad \text { if } \ell\left(x_{i}\right)=-1 \\
& \epsilon_{i} \geq 0
\end{aligned}
$$

If $O P T=0$, then there exists a perfect classifier. However, the Hinge Loss does not guarantee anything about the margin of the classifier. In practice, it might be preferable to have a classifier with a small amount of error but a large margin rather than a perfect classifier with a small margin. Support Vector Machines deal with this issue by regularizing the Hinge Loss with margin. Recall that the margin for a vector w^{*} is defined as $\gamma=\min _{x} \frac{\left|w^{*} \cdot x\right|}{\left\|w^{*}\right\|^{2}}$. This implies $\left\|w^{*}\right\|=\min _{x} \frac{\left|w^{*} \cdot x\right|}{\gamma^{2}} \leq \frac{1}{\gamma^{2}}$. The Support Vector Machine solves the following convex optimization problem

$$
\begin{aligned}
& \min \|w\|^{2}+c \sum_{i=1}^{m} \epsilon_{i} \\
\text { s.t. } \quad w \cdot x_{i} & \geq 1-\epsilon_{i} \quad \text { if } \ell\left(x_{i}\right)=1 \\
w \cdot x_{i} & \leq-1+\epsilon_{i} \quad \text { if } \ell\left(x_{i}\right)=-1 \\
\epsilon_{i} & \geq 0 .
\end{aligned}
$$

Here c is the relative weight of Hinge Loss. The choice of c depends on the data or the application.
Theorem 12.6. The number of mistakes made by the Perceptron algorithm is

$$
\# \text { mistakes } \leq \min _{w}\left(\frac{1}{\gamma_{w}^{2}}+2 \cdot(\text { Hinge Loss of } w)\right)
$$

Proof. Consider the potential $w \cdot w^{*}$. When the algorithm makes a mistake,

$$
w \cdot w^{*} \leftarrow w \cdot w^{*}+\ell\left(x_{i}\right)\left(x_{i} \cdot w^{*}\right) \geq w \cdot w^{*}+1-\epsilon_{i}
$$

where $\ell\left(x_{i}\right)\left(w^{*} \cdot x\right) \geq 1-\epsilon_{i}$ for all i. After M mistakes,

$$
w \cdot w^{*} \geq M-\sum_{i} \epsilon_{i} \geq M-L
$$

where L is the Hinge Loss of w^{*}. When the algorithm makes a mistake,

$$
w \cdot w \leftarrow w \cdot w+\left(x_{i} \cdot x_{i}\right)+2 \ell\left(x_{i}\right)\left(w \cdot x_{i}\right) \leq w \cdot w+1
$$

After M mistakes, $\|w\|^{2} \leq M$. Using Cauchy Schwarz, $\left|w \cdot w^{*}\right| \leq\|w\| \cdot\left\|w^{*}\right\|$, which implies $M-L \leq\left\|w^{*}\right\| \sqrt{M}$. On squaring both sides,

$$
(M-L)^{2} \leq\left\|w^{*}\right\|^{2} M \Rightarrow M \leq\left\|w^{*}\right\|^{2}+2 L \leq \frac{1}{\gamma_{w^{*}}^{2}}+2 L
$$

12.3 Random Projections

Given samples in \mathbb{R}^{d}, consider the random projection matrix $R: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$, where each entry $r_{i j}$ is sampled independently from $N(0,1 / \sqrt{k})$. Let $x^{\prime}=R^{\top} x$. Then $\mathbb{E}\left[\left\|x^{\prime}\right\|^{2}\right]=\|x\|^{2}$.

Theorem 12.7. For a random projection matrix $R: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ and $x \in \mathbb{R}^{d}$,

$$
\operatorname{Pr}\left(\left|\left\|R^{\top} x\right\|^{2}-\|x\|^{2}\right| \geq \epsilon\|x\|^{2}\right) \leq 2 e^{-\frac{\left(\epsilon^{2}-\epsilon^{3}\right) k}{4}}
$$

Therefore, $k=O\left(\frac{1}{\epsilon^{2}} \log \frac{m}{\delta}\right)$ preserves the lengths of m vectors.
Theorem 12.8. For a random projection matrix $R: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ and $x, y \in \mathbb{R}^{d}$,

$$
\operatorname{Pr}\left(\left|\left(R^{\top} x\right) \cdot\left(R^{\top} y\right)-x \cdot y\right| \geq \epsilon\|x\|\|y\|\right) \leq 2 e^{-c \epsilon^{2} k}
$$

Consider the setting when we are trying to learn a halfspace with margin γ in \mathbb{R}^{d}. If we first randomly project to \mathbb{R}^{k} for $k=O\left(\frac{1}{\gamma^{2}} \log \frac{m}{\delta}\right)$, we get a margin on at least $\gamma / 2$ w.h.p., and to learn the halfspace in \mathbb{R}^{k}, we need only $m=O\left(\frac{k}{\epsilon} \log \frac{1}{\epsilon}+\frac{1}{\epsilon} \log \frac{1}{\delta}\right)$ samples. Therefore,

$$
\begin{aligned}
k & =O\left(\frac{1}{\gamma^{2}} \log \frac{1}{\gamma \epsilon \delta}\right), \text { and } \\
m & =O\left(\frac{1}{\epsilon \gamma^{2}} \log \frac{1}{\gamma \epsilon \delta} \log \frac{1}{\epsilon}\right)
\end{aligned}
$$

