CS 7545: Machine Learning Theory

Lecture 12: Boosting and SVM

Instructor: Santosh Vempala

Lecture date: 10/25-27/2021

Fall 2021

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Boosting

Let \mathcal{H} be a hypothesis class of Boolean valued functions.

Definition 12.1 (Weak Learner). A hypothesis h is a weak learner with $\gamma > 0$ if

$$\Pr_D(h(x) = \ell(x)) \ge 1/2 + \gamma$$

where $\ell(x)$ is the true labeling function over D.

Remark 12.2. Random guessing gives a 1/2 correctness. The performance of a weaker learner is slightly better than random guessing.

Definition 12.3 (Strong Learner). For any $\epsilon > 0$, a hypothesis h is a strong learner if

$$\Pr_{D}(h(x) = \ell(x)) \le \epsilon$$

where $\ell(x)$ is the true labeling function over D.

Suppose we know how to get a weak learner $h \in \mathcal{H}$ for any distribution D, can we create a strong learner?

Algorithm 1 Boosting

Initialize $w_i \leftarrow 1$ for each sample $x_i \in S$ for $t = 1, \dots, T$

 $h_i \leftarrow$ the concept that correctly classifies $1/2 + \gamma$ fraction of the current total weight

Increase the weight of each example mis-classified by h_i by a factor of $\frac{\frac{1}{2}+\gamma}{1-\gamma}$

Output $\hat{h} = MAJ(h_1, h_2, \dots, h_T)$

Bound on number of Mistakes:

- Let the number of error made by the final majority hypothesis be m.
- If $MAJ(h_1, h_2, \ldots, h_T)$ misclassifies x_i , at least T/2 h_i 's must misclassify x_i . So,

$$w_i \ge \left(\frac{\frac{1}{2}+\gamma}{\frac{1}{2}-\gamma}\right)^{\frac{T}{2}} = \left(\frac{1+2\gamma}{1-2\gamma}\right)^{\frac{T}{2}}.$$
(12.1)

• Let W_t = total weight at the *t*-th step. Then, $W_0 = n$ and

$$W_{t+1} \le W_t \cdot \left[\left(\frac{1}{2} - \gamma\right) \cdot \left(\frac{\frac{1}{2} + \gamma}{\frac{1}{2} - \gamma}\right) + \left(\frac{1}{2} + \gamma\right) \right] = W_t \cdot (1 + 2\gamma).$$
(12.2)

• From (12.1) and (12.2), $m\left(\frac{1+2\gamma}{1-2\gamma}\right)^{\frac{T}{2}} \leq W_T \leq n(1+2\gamma)^T$ which gives $m \leq (1-4\gamma^2)^{\frac{T}{2}}n$.

• For
$$T = \frac{\ln n}{\gamma^2}$$
, $m < 1 \Rightarrow m = 0$.

So, $\hat{h}(x_i) = \ell(x_i)$ for all $i \in [n]$. To guarantee (ϵ, δ) -PAC learning, we need

$$n = O\left(\frac{1}{\epsilon}\left(\operatorname{VC-dim}(\operatorname{MAJ}_{k}(\mathcal{H}))\log\frac{1}{\epsilon} + \log\frac{1}{\delta}\right)\right),$$

where $MAJ_k(\mathcal{H})$ is the hypothesis class of majority of k concepts from \mathcal{H} .

Theorem 12.4. If a hypothesis class \mathcal{H} has VC-dim d, then majority of k concepts from \mathcal{H} has VC-dim at most $2kd \log(kd)$.

Proof. The number of ways concepts in \mathcal{H} can label m points is at most m^d . The number of ways majority of k concepts in \mathcal{H} can label m points is at most m^{kd} . Let \hat{d} be the VC-dim of class of majority of k concepts from \mathcal{H} . Then, $2^{\hat{d}} \leq \hat{d}^{kd} \Rightarrow \hat{d} \leq 2kd \log(kd)$.

Corollary 12.5. $n = O\left(\frac{1}{\epsilon}\left(Td\log(Td)\log\frac{1}{\epsilon} + \log\frac{1}{\delta}\right)\right)$ for $T = \frac{\ln n}{\gamma^2}$ examples imply (ϵ, δ) -PAC learning.

12.2 Support Vector Machines

Given data points $\{x_i\}$, we want to find a separator w that minimizes the Hinge Loss, which is defined as

$$\min \sum_{i=1}^{m} \epsilon_i$$

s.t. $w \cdot x_i \ge 1 - \epsilon_i$ if $\ell(x_i) = 1$
 $w \cdot x_i \le -1 + \epsilon_i$ if $\ell(x_i) = -1$
 $\epsilon_i \ge 0$

If OPT = 0, then there exists a perfect classifier. However, the Hinge Loss does not guarantee anything about the margin of the classifier. In practice, it might be preferable to have a classifier with a small amount of error but a large margin rather than a perfect classifier with a small margin. Support Vector Machines deal with this issue by regularizing the Hinge Loss with margin. Recall that the margin for a vector w^* is defined as $\gamma = \min_x \frac{|w^* \cdot x|}{|w^*|^2}$. This implies $||w^*|| = \min_x \frac{|w^* \cdot x|}{\gamma^2} \leq \frac{1}{\gamma^2}$. The Support Vector Machine solves the following convex optimization problem

$$\min \|w\|^2 + c \sum_{i=1}^m \epsilon_i$$

s.t. $w \cdot x_i \ge 1 - \epsilon_i$ if $\ell(x_i) = 1$
 $w \cdot x_i \le -1 + \epsilon_i$ if $\ell(x_i) = -1$
 $\epsilon_i \ge 0.$

Here c is the relative weight of Hinge Loss. The choice of c depends on the data or the application.

Theorem 12.6. The number of mistakes made by the Perceptron algorithm is

$$\#mistakes \leq \min_{w} \left(\frac{1}{\gamma_{w}^{2}} + 2 \cdot (Hinge \ Loss \ of \ w) \right)$$

Proof. Consider the potential $w \cdot w^*$. When the algorithm makes a mistake,

$$w \cdot w^* \leftarrow w \cdot w^* + \ell(x_i)(x_i \cdot w^*) \ge w \cdot w^* + 1 - \epsilon_i,$$

where $\ell(x_i)(w^* \cdot x) \ge 1 - \epsilon_i$ for all *i*. After *M* mistakes,

$$w \cdot w^* \ge M - \sum_i \epsilon_i \ge M - L_i$$

where L is the Hinge Loss of w^* . When the algorithm makes a mistake,

 $w \cdot w \leftarrow w \cdot w + (x_i \cdot x_i) + 2\ell(x_i)(w \cdot x_i) \le w \cdot w + 1.$

After M mistakes, $||w||^2 \le M$. Using Cauchy Schwarz, $|w \cdot w^*| \le ||w|| \cdot ||w^*||$, which implies $M - L \le ||w^*|| \sqrt{M}$. On squaring both sides,

$$(M-L)^2 \le \|w^*\|^2 M \Rightarrow M \le \|w^*\|^2 + 2L \le \frac{1}{\gamma_{w^*}^2} + 2L.$$

12.3 Random Projections

Given samples in \mathbb{R}^d , consider the random projection matrix $R : \mathbb{R}^d \to \mathbb{R}^k$, where each entry r_{ij} is sampled independently from $N(0, 1/\sqrt{k})$. Let $x' = R^{\top}x$. Then $\mathbb{E}[||x'||^2] = ||x||^2$.

Theorem 12.7. For a random projection matrix $R : \mathbb{R}^d \to \mathbb{R}^k$ and $x \in \mathbb{R}^d$,

$$\Pr(\|\|R^{\top}x\|^{2} - \|x\|^{2}\| \ge \epsilon \|x\|^{2}) \le 2e^{-\frac{(\epsilon^{2} - \epsilon^{3})k}{4}}$$

Therefore, $k = O\left(\frac{1}{\epsilon^2}\log\frac{m}{\delta}\right)$ preserves the lengths of *m* vectors.

Theorem 12.8. For a random projection matrix $R : \mathbb{R}^d \to \mathbb{R}^k$ and $x, y \in \mathbb{R}^d$,

$$\Pr(|(R^{\top}x) \cdot (R^{\top}y) - x \cdot y| \ge \epsilon ||x|| ||y||) \le 2e^{-c\epsilon^2 k}.$$

Consider the setting when we are trying to learn a halfspace with margin γ in \mathbb{R}^d . If we first randomly project to \mathbb{R}^k for $k = O\left(\frac{1}{\gamma^2}\log\frac{m}{\delta}\right)$, we get a margin on at least $\gamma/2$ w.h.p., and to learn the halfspace in \mathbb{R}^k , we need only $m = O(\frac{k}{\epsilon}\log\frac{1}{\epsilon} + \frac{1}{\epsilon}\log\frac{1}{\delta})$ samples. Therefore,

$$k = O\left(\frac{1}{\gamma^2}\log\frac{1}{\gamma\epsilon\delta}\right), \text{ and}$$
$$m = O\left(\frac{1}{\epsilon\gamma^2}\log\frac{1}{\gamma\epsilon\delta}\log\frac{1}{\epsilon}\right).$$