
CS 7545: Machine Learning Theory Fall 2021

Lecture 12: Boosting and SVM
Instructor: Santosh Vempala Lecture date: 10/25-27/2021

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Boosting

Let H be a hypothesis class of Boolean valued functions.

Definition 12.1 (Weak Learner). A hypothesis h is a weak learner with γ > 0 if

Pr
D

(h(x) = `(x)) ≥ 1/2 + γ

where `(x) is the true labeling function over D.

Remark 12.2. Random guessing gives a 1/2 correctness. The performance of a weaker learner is slightly
better than random guessing.

Definition 12.3 (Strong Learner). For any ε > 0, a hypothesis h is a strong learner if

Pr
D

(h(x) = `(x)) ≤ ε

where `(x) is the true labeling function over D.

Suppose we know how to get a weak learner h ∈ H for any distribution D, can we create a strong learner?

Algorithm 1 Boosting

Initialize wi ← 1 for each sample xi ∈ S
for t = 1, . . . , T

hi ← the concept that correctly classifies 1/2 + γ fraction of the current total weight

Increase the weight of each example mis-classified by hi by a factor of
1
2+γ
1
2−γ

Output ĥ = MAJ(h1, h2, . . . , hT )

Bound on number of Mistakes:

• Let the number of error made by the final majority hypothesis be m.

• If MAJ(h1, h2, . . . , hT ) misclassifies xi, at least T/2 hi’s must misclassify xi. So,

wi ≥
( 1

2 + γ
1
2 − γ

)T
2

=

(
1 + 2γ

1− 2γ

)T
2

. (12.1)

• Let Wt = total weight at the t-th step. Then, W0 = n and

Wt+1 ≤Wt ·
[(

1

2
− γ
)
·
( 1

2 + γ
1
2 − γ

)
+

(
1

2
+ γ

)]
= Wt · (1 + 2γ). (12.2)
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• From (12.1) and (12.2), m
(

1+2γ
1−2γ

)T
2 ≤WT ≤ n(1 + 2γ)T which gives m ≤ (1− 4γ2)

T
2 n.

• For T = lnn
γ2 , m < 1⇒ m = 0.

So, ĥ(xi) = `(xi) for all i ∈ [n]. To guarantee (ε, δ)-PAC learning, we need

n = O

(
1

ε

(
VC-dim(MAJk(H)) log

1

ε
+ log

1

δ

))
,

where MAJk(H) is the hypothesis class of majority of k concepts from H.

Theorem 12.4. If a hypothesis class H has VC-dim d, then majority of k concepts from H has VC-dim at
most 2kd log(kd).

Proof. The number of ways concepts in H can label m points is at most md. The number of ways majority
of k concepts in H can label m points is at most mkd. Let d̂ be the VC-dim of class of majority of k concepts

from H. Then, 2d̂ ≤ d̂kd ⇒ d̂ ≤ 2kd log(kd).

Corollary 12.5. n = O
(
1
ε

(
Td log(Td) log 1

ε + log 1
δ

))
for T = lnn

γ2 examples imply (ε, δ)-PAC learning.

12.2 Support Vector Machines

Given data points {xi}, we want to find a separator w that minimizes the Hinge Loss, which is defined as

min

m∑
i=1

εi

s.t. w · xi ≥ 1− εi if `(xi) = 1

w · xi ≤ −1 + εi if `(xi) = −1

εi ≥ 0

If OPT = 0, then there exists a perfect classifier. However, the Hinge Loss does not guarantee anything
about the margin of the classifier. In practice, it might be preferable to have a classifier with a small amount
of error but a large margin rather than a perfect classifier with a small margin. Support Vector Machines
deal with this issue by regularizing the Hinge Loss with margin. Recall that the margin for a vector w∗ is

defined as γ = minx
|w∗·x|
‖w∗‖2 . This implies ‖w∗‖ = minx

|w∗·x|
γ2 ≤ 1

γ2 . The Support Vector Machine solves the

following convex optimization problem

min ‖w‖2 + c

m∑
i=1

εi

s.t. w · xi ≥ 1− εi if `(xi) = 1

w · xi ≤ −1 + εi if `(xi) = −1

εi ≥ 0.

Here c is the relative weight of Hinge Loss. The choice of c depends on the data or the application.

Theorem 12.6. The number of mistakes made by the Perceptron algorithm is

#mistakes ≤ min
w

(
1

γ2w
+ 2 · (Hinge Loss of w)

)
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Proof. Consider the potential w · w∗. When the algorithm makes a mistake,

w · w∗ ← w · w∗ + `(xi)(xi · w∗) ≥ w · w∗ + 1− εi,

where `(xi)(w
∗ · x) ≥ 1− εi for all i. After M mistakes,

w · w∗ ≥M −
∑
i

εi ≥M − L,

where L is the Hinge Loss of w∗. When the algorithm makes a mistake,

w · w ← w · w + (xi · xi) + 2`(xi)(w · xi) ≤ w · w + 1.

AfterM mistakes, ‖w‖2 ≤M . Using Cauchy Schwarz, |w·w∗| ≤ ‖w‖·‖w∗‖, which impliesM−L ≤ ‖w∗‖
√
M .

On squaring both sides,

(M − L)2 ≤ ‖w∗‖2M ⇒M ≤ ‖w∗‖2 + 2L ≤ 1

γ2w∗
+ 2L.

12.3 Random Projections

Given samples in Rd, consider the random projection matrix R : Rd → Rk, where each entry rij is sampled

independently from N(0, 1/
√
k). Let x′ = R>x. Then E[‖x′‖2] = ‖x‖2.

Theorem 12.7. For a random projection matrix R : Rd → Rk and x ∈ Rd,

Pr(|
∥∥R>x∥∥2 − ‖x‖2 | ≥ ε ‖x‖2) ≤ 2e−

(ε2−ε3)k
4

Therefore, k = O
(

1
ε2 log m

δ

)
preserves the lengths of m vectors.

Theorem 12.8. For a random projection matrix R : Rd → Rk and x, y ∈ Rd,

Pr(|(R>x) · (R>y)− x · y| ≥ ε ‖x‖ ‖y‖) ≤ 2e−cε
2k.

Consider the setting when we are trying to learn a halfspace with margin γ in Rd. If we first randomly

project to Rk for k = O
(

1
γ2 log m

δ

)
, we get a margin on at least γ/2 w.h.p., and to learn the halfspace in

Rk, we need only m = O(kε log 1
ε + 1

ε log 1
δ ) samples. Therefore,

k = O

(
1

γ2
log

1

γεδ

)
, and

m = O

(
1

εγ2
log

1

γεδ
log

1

ε

)
.


