
CS 7545: Machine Learning Theory Fall 2021

Lecture 11: VC Dimension
Instructor: Santosh Vempala Lecture date: 10/18/2021

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

We have seen PAC and mistake bound algorithms for many concept classes. In the case of learning
halfspaces, the number of mistakes made by Perceptron or Winnow have a 1/γ2 dependence on the margin
γ. In fact, one can make this log(1/γ).

Suppose we predict the majority of all surviving w, i.e., suppose after examples x1, x2, . . . , x`, we have
W = {w : ‖w‖ ≤ 1, w>xi ≥ 0 (or w>xi < 0) ∀i ≤ `} as candidates and we consider which of |W ∩ {w :
w>x`+1 ≥ 0}|, |W ∩ {w : w>x`+1 < 0}| is larger. Predict according to that.

Then in each step we eliminate 1/2 of the volume. Suppose B is the unit ball of dimension n. Vol(W )
starts at Vol(B). After m mistakes,

Vol(W ) ≤ 1

2m
Vol(B). (11.1)

At the end, Vol(W ) is at least the volume of the γ-cone.

Vol(B) =

∫ 1

0

(√
1− t2

)n−1
Vol(Bn−1) dt

Vol(γ-cap) =

∫ 1

√
1−γ2

(√
1− t2

)n−1
Vol(Bn−1) dt

Then we have for some constant c,

Vol(γ-cap)

Vol(B)
=

∫ 1√
1−γ2

(√
1− t2

)n−1
dt∫ 1

0

(√
1− t2

)n−1
dt

≥ cγn

Vol(W ) ≥ cγnVol(B). (11.2)

By (11.1) and (11.2),

cγnVol(B) ≤ 1

2m
Vol(B)

m ≤ cn log(1/γ).

Thus, the number of mistakes is m = O(n log(1/γ).
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11.1 VC Dimension

Let x(1), x(2), . . . , x(`) be i.i.d. samples from a distribution D. Let H be a hypothesis class and h∗ ∈ H.
Suppose h ∈ H such that h(x(i)) = h∗(x(i)) for i = 1, . . . ,m.

• How many samples m are needed such that PrD(h(x) 6= h∗(x)) ≤ ε with probability 1− δ?

• For a sample set S with m points, how many distinct ways can concepts in H partition (label) S?

Definition 11.1 (VC-dimension). The VC-dimension of a concept class H is the largest integer m such
that there exists a set of m points that can be shattered by concepts in H. We say that a set S of size m is
shattered by H if S can be labelled in 2m ways by concepts in H.

Example 11.2. • Intervals in R: VC-dim = 2

• Axis-paralleled rectangles in R2: VC-dim = 4

• Half-spaces in Rd: VC-dim = d+ 1.

Theorem 11.3 (Sauer’s Lemma). For a concept class H with VC-dim d, let H(m) be the number of distinct
ways to label m points using h ∈ H. Then H(m) ≤ md.

Proof. We will show the following by induction on m,

H(m) ≤
d∑
i=0

(
m

i

)
=

(
m

≤ d

)
.

The base case is when m ≤ d. The above is true by the definition of VC-dimension.
Let S be a set of m points and let x ∈ S. Consider the set S \ {x}. Let H(S) denote the number of ways

to split S by concepts in H. By the induction hypothesis, H(S \ {x}) ≤
(
m−1
≤d
)
. Note that(

m

≤ d

)
=

(
m− 1

≤ d

)
+

(
m− 1

≤ d− 1

)
.

So it suffices to show that

H(S)−H(S \ {x}) ≤
(
m− 1

≤ d− 1

)
. (11.3)

Let H|S be the concept class of restriction of concepts in H on S. How can H(S) be large? There must be
labellings h and h′ such that they agree on all points in S except x. Let T = {h ∈ H|S : h(x) = 1,∃h′ ∈
H|S s.t. h′(x) = 0 and h(y) = h′(y),∀y ∈ S \ {x}}. Then H(S) − H(S \ {x}) ≤ T (S \ {x}). Suppose
VC-dimension of T is d′. So 2d

′
points can be shattered by T . Then d′ + 1 points can be shattered by H.

So d′ + 1 ≤ d. Then by induction hypothesis, T (S \ {x}) ≤
(
m−1
≤d−1

)
, which proves (11.3).

11.2 Bounding sample complexity by VC dimension

The following concentration inequalities will be helpful in this section.

Theorem 11.4 (Multiplicative Chernoff bound). Suppose X1, X2, . . . , Xm are independent 0/1 random
variables. Let X =

∑m
i=1Xi. Then

Pr(X ≥ (1 + δ)EX) ≤ e−
δ2

2+δEX

Pr(X ≤ (1− δ)EX) ≤ e− δ
2

2 EX .
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Theorem 11.5 (Hoeffding’s inequality). Suppose X1, X2, . . . , Xm are independent random variables bounded
by ai ≤ Xi ≤ bi. Let X =

∑m
i=1Xi. Then

Pr(X ≥ EX + t) ≤ e
− 2t2∑m

i=1
(ai−bi)2

Pr(X ≤ EX − t) ≤ e
− 2t2∑m

i=1
(ai−bi)2 .

Theorem 11.6. The number of examples needed to (ε, δ)-PAC learn hypothesis class H with VC-dim d is
at most

2

ε
(log(2H(2m)) + log(1/δ)) = O

(
1

ε
(d log(1/ε) + log(1/δ)

)
.

Let `(x) be the unknown labeling function. The error of h ∈ H is defined as

errD(h) = Pr
x∼D

(h(x) 6= `(x))

errS(h) =
|{x ∈ S : h(x) 6= `(x)}|

|S|
.

Theorem 11.7. If S is a set of i.i.d. samples from D of size

m ≥ 8

ε2
(log(2H(2m)) + log(1/δ)) = O

(
1

ε2
(d log(1/ε) + log(1/δ)

)
,

then with probability 1− δ, for all h ∈ H,

|errS(h)− errD(h)| ≤ ε.

Proof of Theorem 11.6. We find a hypothesis hS that correctly classifies m points. We want to show that
with probability at least 1− δ.

PrD(hS(x) 6= h∗(x)) ≤ ε.

Let A be the event that errS(h) = 0 and errD(h) > ε. Consider a different setting where we pick 2 subsets
of size m, say S and S′. Let B be the event that errS(h) = 0 and errS′(h) > ε/2.

Claim 11.8.

Pr(B) ≥ 1

2
Pr(A).

Let Pr(B|A) be the probability that h has at least ε/2 error on m points given that h has at least ε
error on D. For i ∈ [m], let Xi be 0/1 random variables such that

Xi =

{
1 if h makes an error on the i’th point of S′

0 otherwise

So, Pr(B|A) = Pr(
∑m
i=1Xi ≥ εm/2). By Chernoff bound,

Pr

(
m∑
i=1

Xi < E(

m∑
i=1

Xi)−
εm

2

)
≤ e− εm8 .

For m ≥ 8/ε, we have

Pr(B) ≥ Pr(A) Pr(B|A) ≥ 1

2
Pr(A).

By the claim, it suffices to show that Pr(B) ≤ δ/2. For this, we pick 2m points S′′. We partition them S′′

into two subsets S, S′ of m points each in the following manner. Pair up the 2m points (a1, b1), . . . , (am, bm)
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randomly and assign ai to S and bi to S′ with probability 1/2, and with the remaining 1/2, assign ai to S′

and bi to S. Now we want to bound Pr(errS(h) = 0 and errS′(h) > ε/2) for a fixed hypothesis h. If h makes
error on both ai and bi for some index i, then Pr(B) = 0 since no error allowed on S. Also if B occurs, then
h must make an error on exactly one of ai or bi for at least εm/2 indices i. For an i with error on ai, the
probability that ai is assigned to S′ is 1/2. So,

Pr(B) ≤ Pr(all εm/2 errors fall in S′) ≤ 1

2εm/2
.

Since the number of possible distinct labelling for S′′ is at most H(2m), it suffices to have

2−εm/2H(2m) ≤ δ

2
,

i.e., m ≥ 2
ε (log(2H(2m)) + log(1/δ)).

Proof of Theorem 11.7. For a fixed hypothesis h ∈ H, let A be the bad event that |errS(h) − errD(h)| > ε.
Let B be the bad event that |errS(h) − errS′(h)| > ε/2 for random subsets S and S′ of size m each.
By an argument similar to the proof of Claim 11.8, we have Pr(B) ≥ 1

2 Pr(A). So it suffices to show that
Pr(B) ≤ δ/2. For this, we pick 2m points S′′, pair up the 2m points (a1, b1), . . . , (am, bm), and again partition
them into two subsets S, S′ of m points each following the same process. If |errS(h)− errS′(h)| > ε/2, then
for at least εm/2 indices i such that h makes an error on exactly one of ai or bi. Now, we want to bound
Pr(|errS(h) − errS′(h)| > ε/2). For indices with exactly one error, define Xi to be random variables such
that

Xi =

{
1 if the error goes to S

−1 if the error goes to S′

By Hoeffding’s inequality,

Pr(B) ≤ Pr

(∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣ > εm

2

)
≤ 2e−

ε2m
8 .

Since the number of possible distinct labelling of S′′ is at most H(2m), it suffices to have

2e−
ε2m
8 H(2m) ≤ δ

2
,

i.e., m ≥ 8
ε2 (log(2H(2m)) + log(1/δ)).


