CS7545: Machine Learning Theory

Fall 2021

Homework 2

Lecturer: Santosh Vempala

Due Date: 25 Oct 2021

Notes:

- You can discuss and collaborate, but please write your own solutions, and clearly mention everyone you discussed with.
- Start on a new page for each problem.
- Submit on Canvas via Gradescope

1. [PAC Learning]

Give a PAC algorithm for learning the following concept class defined by 3 halfspaces in \mathbb{R}^d : A point $x \in \mathbb{R}^d$ is labeled positive if it lies in exactly one of 3 unknown halfspaces (but not the other two), $w_i^{\top} x \ge 0, i = 1, 2, 3$, or if it lies in all 3 of them; otherwise it is labeled negative. [Hint: try to write the labeling function as a polynomial.]

2. [VC Dimension]

Bound the VC dimension of the following concept classes:

- 1. Simplices in \mathbb{R}^d .
- 2. Parities of subsets of k variables out of n.

3. [Large Margin Classifiers]

- 1. For a decision list of length k, give a bound on the margin of the corresponding halfspace, and thereby bound the number of mistakes made by Perceptron and by Winnow in the worst case.
- 2. Let $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ be a labeled sample of n points in \mathbb{R}^n with

$$x_i = (\underbrace{(-1)^i, \dots, (-1)^i, (-1)^{i+1}}_{i \text{ first components}}, 0, \dots, 0) \text{ and } y_i = (-1)^{i+1}.$$

Show that the Perceptron algorithm makes $\Omega(2^n)$ updates before finding a separating hyperplane, regardless of the order in which it receives the points.

3. Let $w^{\top}x \ge 0$ be a halfspace in \mathbb{R}^n with margin $\gamma > 0$ for $||w||_2 = 1$ and $||x||_2 \le 1$. Consider the following algorithm for learning such a halfspace: project examples $x \in \mathbb{R}^n$ randomly to dimension k as y = Rx where R is a random $k \times n$ matrix with iid entries from N(0, 1); learn a halfspace $u^{\top}x \ge 0$ in \mathbb{R}^k using $\widetilde{O}(k/\epsilon)$ examples; ouput $R^{\top}u$ as the hypothesis in \mathbb{R}^n . How small can we make k and guarantee that the algorithm works with probability at least $1 - \delta$?