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Lecture 8: Random Graphs Continued
Instructor: Mirabel Reid Lecture date: 10/11
Scribed by: Mirabel Reid

Recall: definition of monotone graph property, threshold in random graph.

Theorem 1. p∗ = logn+c
n is the threshold for the number of isolated vertices in G(n, p). That is,

lim
n→∞

Pr(Gn,p has an isolated vertex) =

{
1 if c = c(n) → −∞
0 if c = c(n) → ∞

Proof. Let X be the number of isolated vertices in the graph. Let Iv = 1 if v is an isolated vertex,
and 0 otherwise. Then, we can write X =

∑
v∈V Iv.

A vertex v is isolated if none of its edges to other vertices are present. Since each edge is
independently present with probability p, we have Pr(Iv) = (1− p)n−1

EX =
∑
v∈V

EIv = n(1− p)n−1

First, we will look at the case when c → ∞. Substituting p = logn+c
n ,

EX = n

(
1− log n+ c

n

)n−1

≤ n exp

(
− log n+ c

n
(n− 1)

)
= n exp

(
−(log n+ c) +

log n+ c

n

)
< e−c+1

As c → ∞, this goes to zero.
By Markov’s Inequality (and as you will prove in the homework),

Pr(X > 0) ≤ EX < e−c+1

This proves the top inequality.
For c → −∞, we can use the inequality 1− x ≥ ex/(1−x) for x < 1

EX = n

(
1− log n+ c

n

)n−1

≥ n exp

(
− log n+ c

n− log n− c
(n− 1)

)
= n exp

(
−(log n+ c)− (log n+ c)(log n+ c− 1)

n− log n+ c

)
> e−c−1

We have E[X] → ∞ as n → ∞; can we say that X > 0 with high probability? Not necessarily!
Now using the second moment method: notice we can use variance to bound Pr(X = 0).

EX2 = E(
∑
v∈V

Iv)
2 =

∑
v

E[I]
2
v +

∑
u̸=v∈V

E[I]uIv

=
∑
v

Pr(Iv = 1) +
∑

u̸=v∈V

Pr(Iu = 1 and Iv = 1)

= n(1− p)n−1 + n(n− 1)(1− p)2n−3 = E[X] + (E[X])2(1 + o(1))
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Here, we will use Chebyshev’s inequality to bound the probability that X = 0. If X = 0, then
|X − E[X]| ≥ E[X];

Pr(X = 0) ≤ Pr(|X − E[X]| ≥ E[X]) ≤ V arX

(E[X])2

Substituting V ar(X) = E[(]X2)− (E[X])2 = E[X] + o(1)(E[X])2:

Pr(X = 0) ≤ E[X] + o(1)(E[X])2

(E[X])2
=

1

E[X]
+ o(1) < ec + o(1)

As n → ∞, c → −∞, so this goes to 0. Therefore, Pr(X > 0) goes to 1.

1 Alternative Graph Models
Degree concentration in G(n, p): let dv =degree of v in G(n, p).

E[d]v = (n− 1)p

Pr(dv ≥ (n− 1)p+ t
√

(n− 1)p) ≲ exp(−t2/2)

Motivation: Modelling real world networks, e.g. social media sites. Degree distribution decays
polynomially rather than exponentially.

Preferential attachment model: define a sequence of n graphs, G1, G2, . . . , Gn. Each Gt has t
vertices and tm edges (loops and multi-edges allowed).

Algorithm 1 Preferential Attachment Model, AKA Barabási–Albert Model
Parameter: Integer m > 0
Construct G1: 1 vertex, wi
for t = 2, 3, . . . do

Add a vertex vt to the graph
Sample m vertices u1, . . . , um. For any u ∈ Gt

Pr(ui = u) =
deg(u,Gt)

2mt

end for
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