CS 4540/CS 8803: Algorithmic Theory of Intelligence Fall 2023

Lecture 8: Random Graphs Continued

Instructor: Mirabel Reid Lecture date: 10/11
Scribed by: Mirabel Reid

Recall: definition of monotone graph property, threshold in random graph.

log n+c
n

Theorem 1. p* = is the threshold for the number of isolated vertices in G(n,p). That is,

{1 if c=c(n) = —

lim Pr(G,,, has an isolated vertex) = :
' 0 ifc=c(n)— o0
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Proof. Let X be the number of isolated vertices in the graph. Let I, = 1 if v is an isolated vertex,
and 0 otherwise. Then, we can write X =5 _ I,.
A vertex v is isolated if none of its edges to other vertices are present. Since each edge is
independently present with probability p, we have Pr(I,) = (1 —p)"~!
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First, we will look at the case when ¢ — co. Substituting p = logT"“,
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As ¢ — o0, this goes to zero.
By Markov’s Inequality (and as you will prove in the homework),

Pr(X >0) <EX < e ¢t

This proves the top inequality.
For ¢ — —o0, we can use the inequality 1 — z > e*/(1=%) for 2 < 1
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We have E[X] — 0o as n — 00; can we say that X > 0 with high probability? Not necessarily!
Now using the second moment method: notice we can use variance to bound Pr(X = 0).

EX?=E()_1,)*=> B+ > E[],IL
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=n(l—-p)" ' +n(n—1)(1 —p)*"~° = E[X] + (E[X])*(1 + o(1))



Here, we will use Chebyshev’s inequality to bound the probability that X = 0. If X = 0, then
| X — E[X]| > E[X];
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Pr(X =0) < Pr(lX - EX)| 2 EIX) < s

Substituting Var(X) = E[(]X?) — (E[X])? = E[X] + o(1)(E[X])*:

Pr(X =0) < X = gy o <€ o)

As n — oo, ¢ = —00, so this goes to 0. Therefore, Pr(X > 0) goes to 1. O

1 Alternative Graph Models

Degree concentration in G(n,p): let d, =degree of v in G(n, p).
E[d], = (n—1)p
Pr(d, > (n—1)p+ty/(n — 1)p) < exp(—*/2)

Motivation: Modelling real world networks, e.g. social media sites. Degree distribution decays
polynomially rather than exponentially.

Preferential attachment model: define a sequence of n graphs, G1,Gas,...,G,. Each G; has t
vertices and tm edges (loops and multi-edges allowed).

Algorithm 1 Preferential Attachment Model, AKA Barabasi—Albert Model
Parameter: Integer m > 0
Construct Gy: 1 vertex, wi
fort=2,3,... do
Add a vertex vy to the graph
Sample m vertices uq, ..., u,,. For any u € G;

_ deg(u> Gt)

Pr(u; = u) Sy

end for




