CS 4540/CS 8803: Algorithmic Theory of Intelligence

Lecture 8: Random Graphs Continued

Instructor: Mirabel Reid
Lecture date: 10/11
Scribed by: Mirabel Reid

Recall: definition of monotone graph property, threshold in random graph.
Theorem 1. $p^{*}=\frac{\log n+c}{n}$ is the threshold for the number of isolated vertices in $G(n, p)$. That is,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, p} \text { has an isolated vertex }\right)= \begin{cases}1 & \text { if } c=c(n) \rightarrow-\infty \\ 0 & \text { if } c=c(n) \rightarrow \infty\end{cases}
$$

Proof. Let X be the number of isolated vertices in the graph. Let $I_{v}=1$ if v is an isolated vertex, and 0 otherwise. Then, we can write $X=\sum_{v \in V} I_{v}$.

A vertex v is isolated if none of its edges to other vertices are present. Since each edge is independently present with probability p, we have $\operatorname{Pr}\left(I_{v}\right)=(1-p)^{n-1}$

$$
\mathbb{E} X=\sum_{v \in V} \mathbb{E} I_{v}=n(1-p)^{n-1}
$$

First, we will look at the case when $c \rightarrow \infty$. Substituting $p=\frac{\log n+c}{n}$,

$$
\begin{aligned}
\mathbb{E} X & =n\left(1-\frac{\log n+c}{n}\right)^{n-1} \\
& \leq n \exp \left(-\frac{\log n+c}{n}(n-1)\right) \\
& =n \exp \left(-(\log n+c)+\frac{\log n+c}{n}\right) \\
& <e^{-c+1}
\end{aligned}
$$

As $c \rightarrow \infty$, this goes to zero.
By Markov's Inequality (and as you will prove in the homework),

$$
\operatorname{Pr}(X>0) \leq \mathbb{E} X<e^{-c+1}
$$

This proves the top inequality.
For $c \rightarrow-\infty$, we can use the inequality $1-x \geq e^{x /(1-x)}$ for $x<1$

$$
\begin{aligned}
\mathbb{E} X & =n\left(1-\frac{\log n+c}{n}\right)^{n-1} \geq n \exp \left(-\frac{\log n+c}{n-\log n-c}(n-1)\right) \\
& =n \exp \left(-(\log n+c)-\frac{(\log n+c)(\log n+c-1)}{n-\log n+c}\right) \\
& >e^{-c-1}
\end{aligned}
$$

We have $\mathrm{E}[X] \rightarrow \infty$ as $n \rightarrow \infty$; can we say that $X>0$ with high probability? Not necessarily!
Now using the second moment method: notice we can use variance to bound $\operatorname{Pr}(X=0)$.

$$
\begin{aligned}
\mathbb{E} X^{2} & =\mathbb{E}\left(\sum_{v \in V} I_{v}\right)^{2}=\sum_{v} \mathrm{E}[I]_{v}^{2}+\sum_{u \neq v \in V} \mathrm{E}[I]_{u} I_{v} \\
& =\sum_{v} \operatorname{Pr}\left(I_{v}=1\right)+\sum_{u \neq v \in V} \operatorname{Pr}\left(I_{u}=1 \text { and } I_{v}=1\right) \\
& =n(1-p)^{n-1}+n(n-1)(1-p)^{2 n-3}=\mathrm{E}[X]+(\mathrm{E}[X])^{2}(1+o(1))
\end{aligned}
$$

Here, we will use Chebyshev's inequality to bound the probability that $X=0$. If $X=0$, then $|X-\mathrm{E}[X]| \geq \mathrm{E}[X] ;$

$$
\operatorname{Pr}(X=0) \leq \operatorname{Pr}(|X-\mathrm{E}[X]| \geq \mathrm{E}[X]) \leq \frac{\operatorname{Var} X}{(\mathrm{E}[X])^{2}}
$$

Substituting $\operatorname{Var}(X)=\mathrm{E}\left[(] X^{2}\right)-(\mathrm{E}[X])^{2}=\mathrm{E}[X]+o(1)(\mathrm{E}[X])^{2}$:

$$
\operatorname{Pr}(X=0) \leq \frac{\mathrm{E}[X]+o(1)(\mathrm{E}[X])^{2}}{(\mathrm{E}[X])^{2}}=\frac{1}{\mathrm{E}[X]}+o(1)<e^{c}+o(1)
$$

As $n \rightarrow \infty, c \rightarrow-\infty$, so this goes to 0 . Therefore, $\operatorname{Pr}(X>0)$ goes to 1 .

1 Alternative Graph Models

Degree concentration in $G(n, p)$: let $d_{v}=$ degree of v in $G(n, p)$.

$$
\begin{gathered}
\mathrm{E}[d]_{v}=(n-1) p \\
\operatorname{Pr}\left(d_{v} \geq(n-1) p+t \sqrt{(n-1) p}\right) \lesssim \exp \left(-t^{2} / 2\right)
\end{gathered}
$$

Motivation: Modelling real world networks, e.g. social media sites. Degree distribution decays polynomially rather than exponentially.

Preferential attachment model: define a sequence of n graphs, $G_{1}, G_{2}, \ldots, G_{n}$. Each G_{t} has t vertices and $t m$ edges (loops and multi-edges allowed).

```
Algorithm 1 Preferential Attachment Model, AKA Barabási-Albert Model
    Parameter: Integer \(m>0\)
    Construct \(G_{1}\) : 1 vertex, wi
    for \(t=2,3, \ldots\) do
        Add a vertex \(v_{t}\) to the graph
        Sample \(m\) vertices \(u_{1}, \ldots, u_{m}\). For any \(u \in G_{t}\)
            \(\operatorname{Pr}\left(u_{i}=u\right)=\frac{\operatorname{deg}\left(u, G_{t}\right)}{2 m t}\)
    end for
```

