1 Boosting

Definition 1 (Weak Learner (H, γ)). A weak learner for a hypothesis class H, with parameter $\gamma>0$, is a procedure that achieves the following. On any distribution D, it finds a hypothesis h that is correct on $1 / 2+\gamma$ of D.

Our goal is to find a strong learner that outputs a hypothesis that classifies $1-\epsilon$ of D correctly. The following procedure converts a series of weak learners to a strong learner:

```
Algorithm 1 Boosting
    Start with wi =1, for i=1\ldotsm.
    Draw m}\mathrm{ samples from D.
    for t=1\ldotsT do
        Run the weak learner on the discrete distribution defined by the m}\mathrm{ samples weighted by wi
        Obtain hypothesis }\mp@subsup{h}{t}{}\mathrm{ , which achieves accuracy 1/2+ %
        For all incorrect i, increase wi}->\mp@subsup{w}{i}{}(\frac{1/2+\gamma}{1/2-\gamma}
    end for
    Finally, output the hypothesis which takes the majority of all }T,\operatorname{MAJ}(\mp@subsup{h}{1}{},\ldots,\mp@subsup{h}{T}{})\mathrm{ .
```

Theorem 2. Algorithm $1(\epsilon, \delta)$ PAC-learns H provided that $T \geq \frac{\ln m}{2 \gamma^{2}}$ and $m \geq \frac{c}{\epsilon}\left(\frac{\ln m}{\gamma^{2}} \ln H(2 m)+\ln \frac{1}{\delta}\right)$.
Proof. Suppose that $\operatorname{MAJ}\left(h_{1}, \ldots, h_{T}\right)$ makes M_{1} mistakes. At this point, for each i with a mistake, $w_{i} \geq\left(\frac{1 / 2+\gamma}{1 / 2-\gamma}\right)^{T / 2}$.

Let W_{t} be the total weight at time t. So, $W_{T} \geq M_{1}\left(\frac{1 / 2+\gamma}{1 / 2-\gamma}\right)^{T / 2}$.
From t to $t+1$, each mistake is increased by $\frac{1 / 2+\gamma}{1 / 2-\gamma}$. The area of the distribution that the mistakes are made on is bounded by $1 / 2-\gamma$, per the guarantee of the weak learner. So,

$$
W_{t+1} \leq\left(\frac{1 / 2+\gamma}{1 / 2-\gamma}\right)(1 / 2-\gamma) W_{t}+(1 / 2+\gamma) W_{t}=(1+2 \gamma) W_{t}
$$

This implies that $W_{t} \leq m(1+2 \gamma)^{T}$, since the initial weight is m.
Combining the upper and lower bounds,

$$
\begin{gathered}
M_{1}\left(\frac{1+2 \gamma}{1-2 \gamma}\right)^{T / 2} \leq m(1+2 \gamma)^{T} \\
M_{1} \leq m(1+2 \gamma)^{T / 2}(1-2 \gamma)^{T / 2}=m\left(1-4 \gamma^{2}\right)^{T / 2}
\end{gathered}
$$

When $T>\frac{\ln m}{2 \gamma^{2}}$, this guarantees that $M_{1}<1$ (meaning that MAJ makes no mistakes).
What about m ? A natural candidate would be the sample complexity of PAC-learning H. However, this is not quite sufficient. The hypothesis that this algorithm outputs, $\operatorname{MAJ}\left(h_{1}, \ldots, h_{T}\right)$, is not an element of H, so the sample complexity theorem does not apply.

We can bybass this with the following lemma:

Lemma 3. Let H be a hypothesis class. Let $H_{M A J(T)}$ be the class of hypotheses which take the majority of T hypothesis of H. Recall the definition of $H(m)$ from Lecture 3. Then:

$$
H_{M A J(T)}(m) \leq H(m)^{T}
$$

Proof. Suppose we have any m samples. There are at most $H(m)$ distinct ways to label the samples using one hypothesis of H. Therefore, there are at most $H(m)^{T}$ ways to pick T distinct labellings of m samples.

For all $\hat{h} \in H_{M A J(T)}(m), \hat{h}$ is a function of T labellings from H. So, the number of ways to label m samples with $\hat{h} \in H_{M A J(T)}(m)$ is at most $H(m)^{T}$.

Then, we can use the sample complexity theorem (Theorem 6 of Lecture 3, PAC Learning) to bound the number of samples. Theorem 6 gives:

$$
m \geq \frac{c}{\epsilon}\left(\ln H_{M A J(T)}(2 m)+\ln \frac{1}{\delta}\right)
$$

Substituting the upper bound from the lemma:

$$
m \geq \frac{c}{\epsilon}\left(T \ln H(2 m)+\ln \frac{1}{\delta}\right)
$$

Finally, substituting the value of T :

$$
m \geq \frac{c}{\epsilon}\left(\frac{\ln m}{\gamma^{2}} \ln H(2 m)+\ln \frac{1}{\delta}\right)
$$

Also note that the above lemma can be useful in general for bounding the sample complexity of hypothesis classes that consist of functions of hypotheses from another class.

2 Concentration Inequalities Continued

An important motivating question in concentration inequalities is the following:
Let $X=\sum_{i=1}^{n} X_{i}$ be a sum of independent random coins, $X_{i} \in\{0,1\}$, with $\operatorname{Pr}\left(X_{i}\right)=\frac{1}{2}$. We want to bound the probability that X deviates from its expectation, $\mathbb{E} X=n / 2$.

The fundamental theorem we will use to show this is Markov's inequality:
Theorem 4 (Markov's Inequality). Let $X \geq 0, \mathbb{E} X<\infty$. Then, for any $t>0$.

$$
\operatorname{Pr}(X \geq t \mathbb{E} X) \leq \frac{1}{t}
$$

Proof. Remember the definition of expected value; if $\operatorname{Pr}(X \geq T)>\frac{1}{t}$, then $\mathbb{E} X>\frac{T}{t}$. Substituting $T=t \mathbb{E} X$ gives a contradiction.

Another useful inequality uses the variance to give a bound that is often tighter.
Theorem 5 (Chebyshev's Inequality). Let X be a random variable with $\mathbb{E}(X)$, $\operatorname{Var}(X)<\infty$. For any $t>0$:

$$
\operatorname{Pr}(|X-\mathbb{E} X| \geq t \sqrt{\operatorname{Var}(X)}) \leq \frac{1}{t^{2}}
$$

Proof. Let $Y=(X-\mathbb{E} X)^{2}$, and apply Markov's Inequality
However, for the $X=\sum_{i=1}^{n} X_{i}$, the sum of random coins, we can get a much tighter bound.

Theorem 6 (Chernoff Bound). Let $X=\sum_{i=1}^{n} X_{i}$ be a sum of independent random indicators ($X_{i} \in\{0,1\}$) with mean μ. Then, for any $\delta \geq 0$:

$$
\mathbb{P}(X>(1+\delta) \mu) \leq \exp \left(-\frac{\mu \delta^{2}}{2+\delta}\right)
$$

For the case of random coins with equal probabilities $\operatorname{Pr}\left(X_{i}\right)=\frac{1}{2}$, it is possible to analyze how it decays. Note that $\operatorname{Pr}(X=l)=\binom{n}{l} \frac{1}{2^{t}}$. What is the asymptotic value of $\operatorname{Pr}(X=n / 2)$? What about $\operatorname{Pr}(X=n / 2+k)$?

Before proving the theorem, we first show that the probability that $X=n / 2+k$ is exponentially decreasing with respect to k in the following lemma.

Lemma 7.

$$
\mathbb{P}(X=n / 2+k) \leq e^{-k^{2} / n}
$$

Proof. Since X_{i} is 1 with probability $1 / 2$ and 0 with probability $1 / 2, \mathrm{E}[X]:=\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=n / 2$. For $0 \leq k \leq n / 2$, we can compute the probability that $X=n / 2+k$ as follows.

$$
\begin{aligned}
\mathbb{P}\left(X=\frac{n}{2}+k\right) & =\frac{\binom{n}{n / 2+k}}{\binom{n}{n / 2}}=\frac{(n / 2)!(n / 2)!}{(n / 2+k)!(n / 2-k)!} \\
& =\frac{(n / 2)(n / 2-1) \cdots(n / 2-k+1)}{(n / 2+k)(n / 2+k-1) \cdots(n / 2+1)} \\
& =\left(1-\frac{k}{n / 2+k}\right)\left(1-\frac{k}{n / 2+k-1}\right) \cdots\left(1-\frac{k}{n / 2+1}\right) \\
& \leq \exp \left(-k\left(\frac{1}{n / 2+k}+\frac{1}{n / 2+k-1}+\cdots+\frac{1}{n / 2+1}\right)\right) \\
& \leq \exp \left(-k \frac{k}{n / 2+k}\right) \\
& =\exp \left(-\frac{k^{2}}{n / 2+k}\right) \\
& \leq e^{-k^{2} / n}
\end{aligned}
$$

The first inequality is implied by $1+x \leq e^{x} . \exp (x):=e^{x}$ is the exponential function. The last inequality holds because $k \leq n / 2$.

Lemma 7 shows that $\mathbb{P}(X=n / 2+t \sqrt{n}) \leq e^{-t^{2}}$. This means that the probability drops super fast (in sub-Gaussian decay rate). To bound the tail rate $\mathbb{P}(X \geq t)$, we can use Chernoff Bound. We state the more general case $0 \leq X_{i} \leq 1, \mathrm{E}[X]_{i}=p_{i}, X=\sum_{i=1}^{n} X_{i}$ in the following theorem.

Theorem 8 (Chernoff Bound). Let X_{i} be independent random variables satisfying $0 \leq X_{i} \leq$ $1, \mathrm{E}[X]_{i}=p_{i}$. Let $X=\sum_{i=1}^{n} X_{i}$ be the sum, with expectation $\mu:=\mathrm{E}[X]=\sum_{i=1}^{n} p_{i}$. Then for $\delta>0$

$$
\begin{aligned}
\mathbb{P}(X>(1+\delta) \mathrm{E}[X] & \leq e^{-\frac{\delta^{2}}{2+\delta} \mathrm{E}[X]} \\
\mathbb{P}(X<(1-\delta) \mathrm{E}[X]) & \leq e^{-\frac{\delta^{2}}{2} \mathrm{E}[X]}
\end{aligned}
$$

Proof. We prove the first inequality here. For a fixed $t>0$, we have

$$
\begin{aligned}
\mathbb{P}(X>(1+\delta) \mathrm{E}[X]) & =\mathbb{P}(t X>t(1+\delta) \mathrm{E}[X]) \\
& =\mathbb{P}\left(e^{t X}>e^{t(1+\delta) \mathrm{E}[X]}\right) \\
& \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mathrm{E}[X]} \quad \triangleright \text { Markov Inequality }}
\end{aligned}
$$

We first analyze the numerator.

$$
\mathrm{E}\left[e^{t X}\right]=\mathrm{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right]=\mathrm{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right]=\prod_{i=1}^{n} \mathrm{E}\left[e^{t X_{i}}\right]
$$

The term $\mathrm{E}\left[e^{t X_{i}}\right]$ is maximized when X_{i} is the Bernoulli distribution that is 1 with probability p_{i} and 0 with probability $1-p_{i}$. This implies

$$
\mathrm{E}\left[e^{t X_{i}}\right] \leq p_{i} e^{t}+\left(1-p_{i}\right)=1+p_{i}\left(e^{t}-1\right) \leq e^{p_{i}\left(e^{t}-1\right)}
$$

We use $1+x \leq e^{x}$ in the last step. Then we have

$$
\mathrm{E}\left[e^{t X}\right]=\prod_{i=1}^{n} \mathrm{E}\left[e^{t X_{i}}\right] \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{t}-1\right)}=e^{\left(e^{t}-1\right) \sum_{i=1}^{n} p_{i}}=e^{\left(e^{t}-1\right) \mu}
$$

So we can bound the original probability as

$$
\mathbb{P}(X>(1+\delta) \mathrm{E}[X]) \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mathrm{E}[X]}} \leq \frac{e^{\left(e^{t}-1\right) \mu}}{e^{t(1+\delta) \mu}}=\left(e^{e^{t}-1-t(1+\delta)}\right)^{\mu}
$$

Taking derivative of $e^{t}-1-t(1+\delta)$ on t gives

$$
e^{t}-(1+\delta)=0
$$

So it reaches the minimum when $t=\ln (1+\delta)$. The minimum is

$$
e^{t}-1-t(1+\delta)=\delta-(1+\delta) \ln (1+\delta) \leq-\frac{\delta^{2}}{2+\delta}
$$

So we choose $t=\ln (1+\delta)$, and thus have

$$
\mathbb{P}(X>(1+\delta) \mathrm{E}[X]) \leq e^{(\delta-(1+\delta) \ln (1+\delta)) \mu} \leq e^{-\frac{\delta^{2}}{2+\delta} \mu}
$$

By Theorem 8 with $p=1 / 2, \delta=2 t / \sqrt{n}$, we know

$$
\mathbb{P}(X \geq n / 2+t \sqrt{n}) \leq e^{-\frac{4 t^{2}}{2 n(1+t / \sqrt{n})} \frac{n}{2}} \simeq e^{-t^{2}}
$$

This implies that the tail of X decays exponentially.

