
CS 4540/CS 8803: Algorithmic Theory of Intelligence Fall 2023

Lecture 6: Boosting, Concentration Inequalities
Instructor: Santosh Vempala Lecture date: 9/25, 9/27

1 Boosting
Definition 1 (Weak Learner(H, γ)). A weak learner for a hypothesis class H, with parameter γ > 0,
is a procedure that achieves the following. On any distribution D, it finds a hypothesis h that is
correct on 1/2 + γ of D.

Our goal is to find a strong learner that outputs a hypothesis that classifies 1− ϵ of D correctly.
The following procedure converts a series of weak learners to a strong learner:

Algorithm 1 Boosting
Start with wi = 1, for i = 1 . . .m.
Draw m samples from D.
for t = 1 . . . T do

Run the weak learner on the discrete distribution defined by the m samples weighted by wi.
Obtain hypothesis ht, which achieves accuracy 1/2 + γ.
For all incorrect i, increase wi → wi

(
1/2+γ
1/2−γ

)
end for
Finally, output the hypothesis which takes the majority of all T , MAJ(h1, . . . , hT ).

Theorem 2. Algorithm 1 (ϵ, δ) PAC-learns H provided that T ≥ lnm
2γ2 and m ≥ c

ϵ

(
lnm
γ2 lnH(2m) + ln 1

δ

)
.

Proof. Suppose that MAJ(h1, . . . , hT ) makes M1 mistakes. At this point, for each i with a mistake,

wi ≥
(

1/2+γ
1/2−γ

)T/2

.

Let Wt be the total weight at time t. So, WT ≥ M1

(
1/2+γ
1/2−γ

)T/2

.

From t to t+1, each mistake is increased by 1/2+γ
1/2−γ . The area of the distribution that the mistakes

are made on is bounded by 1/2− γ, per the guarantee of the weak learner. So,

Wt+1 ≤
(
1/2 + γ

1/2− γ

)
(1/2− γ)Wt + (1/2 + γ)Wt = (1 + 2γ)Wt

This implies that Wt ≤ m(1 + 2γ)T , since the initial weight is m.
Combining the upper and lower bounds,

M1

(
1 + 2γ

1− 2γ

)T/2

≤ m(1 + 2γ)T

M1 ≤ m(1 + 2γ)T/2(1− 2γ)T/2 = m(1− 4γ2)T/2

When T > lnm
2γ2 , this guarantees that M1 < 1 (meaning that MAJ makes no mistakes).

What about m? A natural candidate would be the sample complexity of PAC-learning H.
However, this is not quite sufficient. The hypothesis that this algorithm outputs, MAJ(h1, . . . , hT ),
is not an element of H, so the sample complexity theorem does not apply.

We can bybass this with the following lemma:
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Lemma 3. Let H be a hypothesis class. Let HMAJ(T ) be the class of hypotheses which take the
majority of T hypothesis of H. Recall the definition of H(m) from Lecture 3. Then:

HMAJ(T )(m) ≤ H(m)T

Proof. Suppose we have any m samples. There are at most H(m) distinct ways to label the samples
using one hypothesis of H. Therefore, there are at most H(m)T ways to pick T distinct labellings
of m samples.

For all ĥ ∈ HMAJ(T )(m), ĥ is a function of T labellings from H. So, the number of ways to label
m samples with ĥ ∈ HMAJ(T )(m) is at most H(m)T .

Then, we can use the sample complexity theorem (Theorem 6 of Lecture 3, PAC Learning) to
bound the number of samples. Theorem 6 gives:

m ≥ c

ϵ

(
lnHMAJ(T )(2m) + ln

1

δ

)
Substituting the upper bound from the lemma:

m ≥ c

ϵ

(
T lnH(2m) + ln

1

δ

)
Finally, substituting the value of T :

m ≥ c

ϵ

(
lnm

γ2
lnH(2m) + ln

1

δ

)

Also note that the above lemma can be useful in general for bounding the sample complexity of
hypothesis classes that consist of functions of hypotheses from another class.

2 Concentration Inequalities Continued
An important motivating question in concentration inequalities is the following:

Let X =
∑n

i=1 Xi be a sum of independent random coins, Xi ∈ {0, 1}, with Pr(Xi) =
1
2 . We

want to bound the probability that X deviates from its expectation, EX = n/2.
The fundamental theorem we will use to show this is Markov’s inequality:

Theorem 4 (Markov’s Inequality). Let X ≥ 0, EX < ∞. Then, for any t > 0.

Pr(X ≥ tEX) ≤ 1

t

Proof. Remember the definition of expected value; if Pr(X ≥ T ) > 1
t , then EX > T

t . Substituting
T = tEX gives a contradiction.

Another useful inequality uses the variance to give a bound that is often tighter.

Theorem 5 (Chebyshev’s Inequality). Let X be a random variable with E(X),Var(X) < ∞. For
any t > 0:

Pr(|X − EX| ≥ t
√

Var(X)) ≤ 1

t2

Proof. Let Y = (X − EX)2, and apply Markov’s Inequality

However, for the X =
∑n

i=1 Xi, the sum of random coins, we can get a much tighter bound.
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Theorem 6 (Chernoff Bound). Let X =
∑n

i=1 Xi be a sum of independent random indicators
(Xi ∈ {0, 1}) with mean µ. Then, for any δ ≥ 0:

P(X > (1 + δ)µ) ≤ exp

(
− µδ2

2 + δ

)
For the case of random coins with equal probabilities Pr(Xi) =

1
2 , it is possible to analyze how

it decays. Note that Pr(X = l) =
(
n
l

)
1
2l

. What is the asymptotic value of Pr(X = n/2)? What
about Pr(X = n/2 + k)?

Before proving the theorem, we first show that the probability that X = n/2+k is exponentially
decreasing with respect to k in the following lemma.

Lemma 7.
P(X = n/2 + k) ≤ e−k2/n

Proof. Since Xi is 1 with probability 1/2 and 0 with probability 1/2, E[X] := E[
∑n

i=1 Xi] = n/2.
For 0 ≤ k ≤ n/2, we can compute the probability that X = n/2 + k as follows.

P(X =
n

2
+ k) =

(
n

n/2+k

)(
n

n/2

) =
(n/2)!(n/2)!

(n/2 + k)!(n/2− k)!

=
(n/2)(n/2− 1) · · · (n/2− k + 1)

(n/2 + k)(n/2 + k − 1) · · · (n/2 + 1)

=(1− k

n/2 + k
)(1− k

n/2 + k − 1
) · · · (1− k

n/2 + 1
)

≤ exp

(
−k(

1

n/2 + k
+

1

n/2 + k − 1
+ · · ·+ 1

n/2 + 1
)

)
≤ exp(−k

k

n/2 + k
)

= exp(− k2

n/2 + k
)

≤e−k2/n

The first inequality is implied by 1 + x ≤ ex. exp(x) := ex is the exponential function. The last
inequality holds because k ≤ n/2.

Lemma 7 shows that P(X = n/2 + t
√
n) ≤ e−t2 . This means that the probability drops super

fast (in sub-Gaussian decay rate). To bound the tail rate P(X ≥ t), we can use Chernoff Bound.
We state the more general case 0 ≤ Xi ≤ 1,E[X]i = pi, X =

∑n
i=1 Xi in the following theorem.

Theorem 8 (Chernoff Bound). Let Xi be independent random variables satisfying 0 ≤ Xi ≤
1,E[X]i = pi. Let X =

∑n
i=1 Xi be the sum, with expectation µ := E[X] =

∑n
i=1 pi. Then for

δ > 0

P(X > (1 + δ) E[X] ≤ e−
δ2

2+δ E[X]

P(X < (1− δ) E[X]) ≤ e−
δ2

2 E[X]

Proof. We prove the first inequality here. For a fixed t > 0, we have

P(X > (1 + δ) E[X]) =P(tX > t(1 + δ) E[X])

=P(etX > et(1+δ) E[X])

≤
E
[
etX

]
et(1+δ) E[X]

▷ Markov Inequality
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We first analyze the numerator.

E
[
etX

]
= E

[
et

∑n
i=1 Xi

]
= E

[
n∏

i=1

etXi

]
=

n∏
i=1

E
[
etXi

]
The term E

[
etXi

]
is maximized when Xi is the Bernoulli distribution that is 1 with probability pi

and 0 with probability 1− pi. This implies

E
[
etXi

]
≤ pie

t + (1− pi) = 1 + pi(e
t − 1) ≤ epi(e

t−1)

We use 1 + x ≤ ex in the last step. Then we have

E
[
etX

]
=

n∏
i=1

E
[
etXi

]
≤

n∏
i=1

epi(e
t−1) = e(e

t−1)
∑n

i=1 pi = e(e
t−1)µ

So we can bound the original probability as

P(X > (1 + δ) E[X]) ≤
E
[
etX

]
et(1+δ) E[X]

≤ e(e
t−1)µ

et(1+δ)µ
=

(
ee

t−1−t(1+δ)
)µ

Taking derivative of et − 1− t(1 + δ) on t gives

et − (1 + δ) = 0.

So it reaches the minimum when t = ln(1 + δ). The minimum is

et − 1− t(1 + δ) = δ − (1 + δ) ln(1 + δ) ≤ − δ2

2 + δ
.

So we choose t = ln(1 + δ), and thus have

P(X > (1 + δ) E[X]) ≤ e(δ−(1+δ) ln(1+δ))µ ≤ e−
δ2

2+δµ

By Theorem 8 with p = 1/2, δ = 2t/
√
n, we know

P(X ≥ n/2 + t
√
n) ≤ e

− 4t2

2n(1+t/
√

n)
n
2 ≃ e−t2

This implies that the tail of X decays exponentially.
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