CS 4540/CS 8803: Algorithmic Theory of Intelligence Fall 2023

Lecture 6: Boosting, Concentration Inequalities
Instructor: Santosh Vempala Lecture date: 9/25, 9/27

1 Boosting

Definition 1 (Weak Learner(H,v)). A weak learner for a hypothesis class H, with parameter v > 0,
is a procedure that achieves the following. On any distribution D, it finds a hypothesis h that is
correct on 1/2 4+~ of D.

Our goal is to find a strong learner that outputs a hypothesis that classifies 1 — € of D correctly.
The following procedure converts a series of weak learners to a strong learner:

Algorithm 1 Boosting
Start with w; =1, fori=1...m.
Draw m samples from D.
fort=1...T do
Run the weak learner on the discrete distribution defined by the m samples weighted by w;.
Obtain hypothesis h;, which achieves accuracy 1/2 + .

. - 1/2
For all incorrect 4, increase w; — w; (15;1)

end for
Finally, output the hypothesis which takes the majority of all T, MAJ(hy,..., hr).

Theorem 2. Algorithm 1 (¢,0) PAC-learns H provided thatT >

L andm > ¢ (22 In H(2m) +In 2).

Proof. Suppose that M AJ(hy,...,hr) makes M; mistakes. At this point, for each ¢ with a mistake,
T/2
w; > (1/2"'7) .

v = \1/2—
_ _ 1244\ T/?
Let Wy be the total weight at time ¢t. So, Wp > M, (1/2_1) .
From t to t+ 1, each mistake is increased by Y247 The area of the distribution that the mistakes

1/2—y
are made on is bounded by 1/2 — ~, per the guarantee of the weak learner. So,

1/24+~
1/2 —

This implies that W; < m(1 + 27)7, since the initial weight is m.
Combining the upper and lower bounds,

T/2
1+2
M, ( + 7) Sm(1+27)T

My <m(1+29)T2(1 - 29)72 = m(1 — 44*)7/2

When T > ISA/T, this guarantees that M7 < 1 (meaning that MAJ makes no mistakes).

What about m? A natural candidate would be the sample complexity of PAC-learning H.
However, this is not quite sufficient. The hypothesis that this algorithm outputs, M AJ(hy, ..., hr),
is not an element of H, so the sample complexity theorem does not apply.

We can bybass this with the following lemma:




Lemma 3. Let H be a hypothesis class. Let Hyrajr) be the class of hypotheses which take the
majority of T hypothesis of H. Recall the definition of H(m) from Lecture 3. Then:

Hyasry(m) < H(m)"

Proof. Suppose we have any m samples. There are at most H(m) distinet ways to label the samples
using one hypothesis of H. Therefore, there are at most H(m)T ways to pick T distinct labellings
of m samples.

For all h € Hypagry(m), h is a function of T labellings from H. So, the number of ways to label
m samples with h € Hg a1y (m) is at most H(m)T. O

Then, we can use the sample complexity theorem (Theorem 6 of Lecture 3, PAC Learning) to
bound the number of samples. Theorem 6 gives:

1
m Z g (hl HMAJ(T) (2m) + lIl 5)

Substituting the upper bound from the lemma:

m> < <TlnH(2m) +In (15)
€

Finally, substituting the value of T":

m> < (h;;nlnH@m)—i-lnCls)

[0}

O

Also note that the above lemma can be useful in general for bounding the sample complexity of
hypothesis classes that consist of functions of hypotheses from another class.

2 Concentration Inequalities Continued

An important motivating question in concentration inequalities is the following:

Let X = " | X; be a sum of independent random coins, X; € {0,1}, with Pr(X;) =
want to bound the probability that X deviates from its expectation, EX = n/2.

The fundamental theorem we will use to show this is Markov’s inequality:

We

1
5

Theorem 4 (Markov’s Inequality). Let X > 0, EX < oo. Then, for any t > 0.

Pr(X > tEX) <

S

Proof. Remember the definition of expected value; if Pr(X >T) > 1, then EX > % Substituting
T =tEX gives a contradiction. O

Another useful inequality uses the variance to give a bound that is often tighter.

Theorem 5 (Chebyshev’s Inequality). Let X be a random variable with E(X), Var(X) < co. For
any t > 0:

1
Pr(|X —EX| > ty/ Var(X)) < e
Proof. Let Y = (X —EX)2, and apply Markov’s Inequality O

However, for the X = Z?:l X, the sum of random coins, we can get a much tighter bound.



Theorem 6 (Chernoff Bound). Let X = Y1 | X; be a sum of independent random indicators
(X; € {0,1} ) with mean . Then, for any 6 > 0:

2
P(X > (14 6)u) < exp < Q‘f 5)

For the case of random coins with equal probabilities Pr(X;) = %, it is possible to analyze how

it decays. Note that Pr(X =1) = (})3. What is the asymptotic value of Pr(X = n/2)? What
about Pr(X =n/2+k)?

Before proving the theorem, we first show that the probability that X = n/2+k is exponentially
decreasing with respect to k in the following lemma.

Lemma 7. )
P(X =n/2+Fk)<e */n

Proof. Since X; is 1 with probability 1/2 and 0 with probability 1/2, E[X] := E[}." | X;] = n/2.
For 0 < k < n/2, we can compute the probability that X = n/2 + k as follows.

(o (n/2)!(n/2)!

Tk = (ni) = 2+ k) ()2 — )
__(m/2)(n/2-1)---(n/2 -k +1)

(n/24+k)(n/24+k—1)---(n/2+1)

(- o)1= - )
n/2+k n/2+k—1 n/2+1

P(X =~
2

< k( L, ! TR )
xp [ —
=P n/24+k n/2+k—1 n/2+1

k
<
exp( kn/2+k)
k‘2
=exp(— /2+k)
§67k2/n

The first inequality is implied by 1 + x < e®. exp(z) := e” is the exponential function. The last
inequality holds because k < n/2. O

Lemma 7 shows that P(X = n/2 + ty/n) < ¢’ This means that the probability drops super
fast (in sub-Gaussian decay rate). To bound the tail rate P(X > t), we can use Chernoff Bound.
We state the more general case 0 < X; < 1,E[X], =p;, X =Y. | X; in the following theorem.

Theorem 8 (Chernoff Bound). Let X; be independent random wvariables satisfying 0 < X, <
LE[X], = pi. Let X = > | X; be the sum, with expectation p = E[X] = > p;. Then for
>0
2
P(X > (1+6)E[X] < e 275 BIX
2
P(X < (1-6)E[X]) < e 7 B
Proof. We prove the first inequality here. For a fixed ¢ > 0, we have
P(X > (14 6)E[X]) =P(tX > t(1+ ) E[X])
:P(etX > 6t(1+5)E[X})

E [etX}

S iA+0) BX] > Markov Inequality



We first analyze the numerator.

H&W:EFZLXﬂ:E

1% - TTel]

i=1
The term E [etX"} is maximized when X, is the Bernoulli distribution that is 1 with probability p;
and 0 with probability 1 — p;. This implies

Ele™] <pie' + (1—p;) = 1+pie! —1) < err( =D

We use 1 + = < e” in the last step. Then we have

E[e!X] = ﬁE [¢X] < ﬁ Gpilei=1) _ (e D) S pi _ et — D
=1

i=1

So we can bound the original probability as

E[e] ele'~Dr et—1-t(146)\*
MX>O+®EMD§é@mmmﬁemHm:(e <>)

Taking derivative of e/ — 1 — (1 +4) on ¢ gives
el —(1+4)=0.
So it reaches the minimum when ¢ = In(1 4 ¢). The minimum is

62
246"

e —1-t1+6)=56—(1+6)In(1+6) < —
So we choose t = In(1 + 4), and thus have

P(X > (14 8) E[X]) < G-+ m1+0) < o~ Frsn

By Theorem 8 with p =1/2,6 = 2t/+/n, we know

2 n
P(X >n/2+ty/n) <e VD B o et

This implies that the tail of X decays exponentially.



