
CS 4540/CS 8803: Algorithmic Theory of Intelligence Fall 2023

Lecture 5: Random Projection
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1 Random projection
The sample complexity for (ϵ, δ)-PAC learning a halfspace in Rn is O( 1ϵ (n log 1

ϵ + log 1
δ )). For

halfspaces that lie in high dimension with γ−margin, could we have a better complexity? For
example, if we can project the data into Rk, k ≪ n, while preserving the linear separability of the
data, then the sample complexity will be O( 1ϵ (k log

1
ϵ + log 1

δ )).
As the initial step, consider the case when we randomly project the data into one dimension. Let

w ∈ Rn be the normal vector of the subspace that separates the data. To preserve the separability,
the candidate vectors lie in a cone around w. If the projection vector is randomly drawn uniformly
from the unit ball in Rn, the probability that the projection preserves separability is O(γn), which
is exponentially small. Thus it is not sufficient to project to one dimension. In the following section,
we will figure out the dimension of the subspace that we can project the data to while preserving
separability with high probability.

Random Projection Matrix Consider a random matrix R ∈ Rn×k, where Rij ∼ N(0, 1/k). For
a vector x ∈ Rn, it is projected to the vector x̃ = R⊤x ∈ Rk. We will next show that the random
projection by R can approximately preserve the norm and inner product.

Lemma 1. For x̃ = R⊤x,Rij ∼ N(0, 1/k), we have

E∥x̃∥22 = ∥x∥22

Proof.

E∥x̃∥22 = Ex⊤RR⊤x = x⊤(ERR⊤)x

For 1 ≤ i, j ≤ n, we have

E(RR⊤)ij =

k∑
l=1

ERilRjl =

{
0 i ̸= j

1 i = j

Thus ERR⊤ is the identity matrix. So we have

E∥x̃∥22 = x⊤x = ∥x∥22

Theorem 2. For x̃ = R⊤x,Rij ∼ N(0, 1/k), we have

P
(
|∥x̃∥22 − ∥x∥22| > ϵ∥x∥22

)
≤ 2e−(ϵ2−ϵ3)k/4

Corollary 3. Consider doing random projection for m samples x(1), · · · , x(m) with x̃(i) = R⊤x(i),
where R ∈ Rn×k, Rij ∼ N(0, 1/k). Let 0 < ϵ < 1/2, 0 < δ < 1. Then for k ≥ 8

ϵ2 log
2m
δ , with

probability ≥ 1− δ,
∀i ∈ [m], (1− ϵ)∥x(i)∥22 ≤ ∥x̃(i)∥22 ≤ (1 + ϵ)∥x(i)∥22.

Proof. For m samples x(1), · · · , x(m), by Theorem 2,

P(∃i ∈ [m], |∥x̃(i)∥22 − ∥x(i)∥22 > ϵ∥x(i)∥22|) ≤ 2me−(ϵ2−ϵ3)k/4
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In other words, with probability ≥ 1 − 2me−(ϵ2−ϵ3)k/4, all samples can preserve their norm within
ϵ. That is,

P(∀i ∈ [m], (1− ϵ)∥x(i)∥22 ≤ ∥x̃(i)∥22 ≤ (1 + ϵ)∥x(i)∥22) ≥ 1− 2me−(ϵ2−ϵ3)k/4

To let this probability to be ≥ 1− δ, we need

2me−(ϵ2−ϵ3)k/4 ≤ δ

This implies

k ≥
4 log 2m

δ

ϵ2(1− ϵ)

For ϵ < 1/2,
4 log 2m

δ

ϵ2(1− ϵ)
<

8 log 2m
δ

ϵ2

So it suffices to let

k ≥
8 log 2m

δ

ϵ2

To preserve linear separability, we need also to preserve the inner product within ϵ. We give the
result in the following lemma.

Lemma 4. For u, v ∈ Rn with ∥u∥2, ∥v∥2 ≤ 1, we use the same random projection and get ũ, ṽ.
Then

P (|⟨u, v⟩ − ⟨ũ, ṽ⟩| ≤ ϵ) ≥ 1− 4e−(ϵ2−ϵ3)k/4

Proof. By Theorem 2, with probability ≥ 1− 4e−(ϵ2−ϵ3)k/4,

4⟨ũ, ṽ⟩ =∥ũ+ ṽ∥22 − ∥ũ− ṽ∥22
≤∥u+ v∥2(1 + ϵ)− ∥u− v∥22(1− ϵ)

=4⟨u, v⟩+ ϵ(∥u+ v∥22 + ∥u− v∥22)
=4⟨u, v⟩+ 2ϵ(∥u∥22 + ∥v∥22)
≤4⟨u, v⟩+ 4ϵ

This implies
⟨ũ, ṽ⟩ ≤ ⟨u, v⟩+ ϵ

We can prove the second part similarly.

Corollary 5. To learn a halfspace in Rn with margin γ, we can project the data into a k−dimensional
subspace with k = O( 1

γ2 log
1

γ2ϵδ ). Then we need only m = O( 1
ϵγ2 log

1
γ2ϵδ log

1
ϵ + 1

ϵ log
1
δ ) = Õ( 1

ϵγ2 )

samples to (ϵ, δ)−PAC learn the halfspaces.

Proof. We first randomly project the data into Rk with k = O( 1
γ2 log

m
δ ). We get a margin of at

least γ/2 with high probability. To learn the halfspace in Rk, we need m = O(kϵ log
1
ϵ + 1

ϵ log
1
δ )

samples. Therefore we have

k = O(
1

γ2
log

1

γ2ϵδ
), m = O(

1

ϵγ2
log

1

γ2ϵδ
log

1

ϵ
+

1

ϵ
log

1

δ
)

Extension: sparse random projection / using random signs R ∈ {±1}n×k.

2


