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Lecture 4: Kernel Trick & SVM
Instructor: Santosh Vempala Lecture date: 9/18

1 The Kernel Trick
Suppose we have a set of points x ∈ R2 that are labelled in the following way:

ℓ(x) =

{
1 x2

1 + x2
2 ≤ 1 and x2

1 +
1
2x

2
2 ≤ 2

−1 otherwise

This is the intersection of the unit circle and an ellipse. This cannot be written as a linear classifier
of the form ℓ(x) = ax1 + bx2 ≥ c.

Can we create a new set of features (y1, y2) such that ℓ(x) = 1 if ay1 + by2 ≥ c?
Yes; let y1 = sign(1− x2

1 − x2
2) and y2 = sign(2− x2

1 − 1
2x

2
2). Then, ℓ(x) = 1 if y1 + y2 ≥ 2.

In general, let ϕ : Rn → RN map x to a different set of features in RN (N can be infinite!). We
say K(x, y) is a kernel function if we can write K(x, y) = ⟨ϕ(x), ϕ(y)⟩ for some function ϕ.

Examples:

• K(x, y) = ⟨x, y⟩, trivially with ϕ(x) = x.

• K(x, y) = (1 + ⟨x, y⟩)d for a d ∈ Z+.

This is the polynomial kernel, and the features are c
∏n

i=1 x
ji
i where the exponents add up to

d,
∑n

i=1 ji = d.

• K(x, y) = e−α∥x−y∥2

This is the Gaussian kernel; there exists a ϕ in infinite dimensions.

Kernel Perceptron. Suppose we want to learn the class defined by the kernel K(x, y) = ⟨ϕ(x), ϕ(y)⟩.
Imagine we can compute ϕ(x) for each data point x. In this case, the label is 1 if ⟨w∗, ϕ(x)⟩ > 0,
and we can learn w∗ via the perceptron algorithm.

Algorithm 1 Perceptron Algorithm
Start with w = 0.
for each input x do

Predict sign(⟨w, ϕ(x)⟩)
On a mistake, set w ← w + l(x)ϕ(x)

end for

What is the issue with this method? Recall that ϕ can have a much higher dimension than n; it
can even be infinite. Therefore, we don’t want to have to compute ϕ directly.

Fortunately, since K is computable, there is a way around this. Note that when guessing the
label of x, we do not use ϕ(x) directly; instead, we only need the inner product of ϕ(x) and our
estimate, w =

∑m
i=1 ℓ(x

(i))ϕ(x(i)). This inner product is simply ⟨ϕ(x), w⟩ =
∑m

i=1 ℓ(x
(i))K(x, x(i)).

We will compute this by maintaining a list of inputs x where we have previously made a mistake.

1



Algorithm 2 Kernelized Perceptron Algorithm
Start with w = 0.
Let M = [].
for each input x do

Predict sign(
∑

y∈M ℓ(y)⟨ϕ(y), ϕ(x)⟩) =sign(
∑

y∈M ℓ(y)K(y, x))
On a mistake, append x to M .

end for

2 Support Vector Machines
Previously, we studied the perfect classification task. Given a set of inputs x, find a w such that
∀x, ℓ(x)⟨w, x⟩ ≥ 1.

However, this may not be possible in all applications if, for example, some labels are flipped due
to noise or error. Suppose there is no perfect linear classifier, but we still want to find a w∗ that is
a ‘good’ linear classifier for our data.

One natural idea is to minimize the number of ‘violations’, datapoints that are misclassified by
w.

Definition 1 (0-1 Loss).

L0−1(w,X) =
∑
x∈X

1{sign(⟨w, x⟩) ̸= ℓ(x)}

However, it is not feasible to compute a vector w which minimizes the 0-1 loss. In fact, it is
NP-Hard to approximately minimize the loss. In practice, it is more feasible to minimize the sum
of the distance from the separating plane for all misclassified points.

Definition 2 (Hinge Loss).
min
w,ζ

C
∑
i

ζi + ∥w∥22

such that

⟨w, x(i)⟩ ≥ 1− ζi whenever ℓ(x(i) = 1)
⟨w, x(i)⟩ ≤ −1 + ζi whenever ℓ(x(i) = −1)

ζi ≥ 0 ∀i

The term ∥w∥22 is the regularization, which prevents the program making w very large to achieve
good accuracy. The weight of this regularization term can be tuned using the constant C. Note that
γw = minx

|⟨w,x⟩|
∥w∥2

. So, ∥w∥22 ∝ 1/γ2
w; the program minimizes the square of the inverse margin.

Unlike 0-1 Loss, the hinge loss is convex; this means that the optimal w can be found in polyno-
mial time.

Theorem 3. The number of mistakes made by percpetron is bounded by

M ≤ min
w

1

γ2
w

+ 2
∑
i

ζi

Proof. Let w∗ be the true minimizer of the convex program in Definition 2. Consider the potential
function ⟨w,w∗⟩/∥w∥, starting at 0. Whenever the algorithm makes a mistake, we update as w̃ :=
w + ℓ(xi)xi. For the numerator, we have

⟨w̃, w∗⟩ = ⟨w + ℓ(xi)xi, w
∗⟩ = ⟨w,w∗⟩+ ℓ(xi)⟨xi, w

∗⟩ ≥ ⟨w,w∗⟩+ 1− ζi

2



The next step is the same as our original proof of perceptron. We assume that ∥x∥ is bounded
by 1, so we have

∥w̃∥2 =⟨w̃, w̃⟩ = ⟨w + ℓ(x)x,w + ℓ(x)x⟩ = ⟨w,w⟩+ ⟨x, x⟩+ 2ℓ(x)⟨w, x⟩
≤⟨w,w⟩+ ⟨x, x⟩
≤∥w∥2 + 1

After T mistakes, the numerator is bounded by T −
∑T

i=1 ζi. The denominator is ∥w∥ ≤
√
T .

By the Cauchy Schwarz inequality, ⟨w,w∗⟩ ≤ ∥w∗∥∥w∥. So, ⟨w,w∗⟩
∥w∥ ≤ ∥w∗∥.

∥w∗∥ ≥ ⟨w,w
∗⟩

∥w∥
≥

T −
∑T

i=1 ζi√
T

Let L =
∑T

i=1 ζi. In other words.

(T − L)2 ≤ T∥w∗∥2,

which implies that
T 2 − 2TL ≤ T∥w∗∥2

and hence

T ≤ ∥w∗∥2 + 2L =
1

γ2
w

+ 2

T∑
i=1

ζi

as claimed.

3


