
CS 4540/CS 8803: Algorithmic Theory of Intelligence Fall 2023

Lecture 3: PAC Learning
Instructor: Santosh Vempala Lecture date: 9/06,9/11,9/13

1 Learning the Class of Conjunctions
Consider data of the form {x1, . . . , xn} ∈ {0, 1}n. A conjunction is a function on some subset of the
variables {x1, x2 . . . , xn, x̄1, x̄2 . . . , x̄n}, where x̄i = 1 − xi. It maps x to 1 if every variable in the
subset is 1, and 0 otherwise. For example:

h(x) = x1 ∧ x2 ∧ x̄5

h(x) = x̄3 ∧ x̄4

h(x) = x1 ∧ x2 ∧ · · · ∧ xr

The size of the hypothesis class is 3n; for each i, either xi is in the conjunction, x̄i is in the
conjunction, or both are absent.

Any such conjunction can be represented as a linear halfspace, so the tools for learning halfspaces
seen in previous lectures apply without modification. Simply sum the variables in the conjunction,
and set the threshold to be the number of variables. Using the examples above:

h(x) = (x1 + x2 + 1− x5 ≥ 3)
h(x) = (1− x3 + 1− x4 ≥ 2)
h(x) = (x1 + x2 + · · ·+ xr ≥ r)

If xi ∈ {0, 1}, these two ways of writing the function are equivalent.

1.1 Learn-Conj
Let D be a distribution over {0, 1}n. Assume that each example is chosen independently from this
distribution. Consider the following algorithm for learning an unknown conjunction.

Algorithm 1 LearnConj
Maintain two sets of indices S = {x1, x2 . . . , xn},S̄ = {x̄1, x̄2, x̄n}
for each input x(i) do

if l(x(i)) = 1 then
For each j ∈ [n], remove x̄j from S̄ if x(i)

j = 1, and remove xj from S if x(i) = 0
else

Do nothing
end if

end for
Output the conjunction of the remaining literals in S and S̄.

At any point, the hypothesis h(x) =
(∧

i∈S xj

)
∧
(∧

i∈S̄ x̄j

)
is consistent with all examples seen

so far.

Theorem 1. With m ≥ 1
ϵ (n log 3 + log 1

δ ) examples, with probability 1 − δ, LearnConj will be
correct on a new example from D with probability 1− ϵ.

Proof. Let h ∈ H be a hypothesis with Prx∼D(h(x) ̸= l(x)) > ϵ. The probability that h is not
eliminated after m examples is at most (1− ϵ)m.

The probability that any such ‘bad h’ survives after m examples is at most 3n(1− ϵ)m.
Setting 3n(1 − ϵ)m < δ and taking the log of both sides, we see that m ≥ 1

ϵ (n log 3 + log 1
δ )

suffices.
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1.2 Learning Decision Lists
A decision list is a generalization of the set of conjunctions. It consists of a series of if-else state-
ments, returning true/false at each step. E.g.,

If x1 = 1, return False; else if x4 = 0, return True; else, return False.

Any conjunction can be written as a decision list. E.g., x1 ∧ x2 ∧ · · · ∧ xr is equivalent to:

If x1 = 0, return False; else if x2 = 0, return False; . . . else if xr = 0, return False; else, return True

The number of possible decision lists is at most 4nn! (choosing 0/1 for the check and return
statement, and every possible ordering of the indices).

Suppose we have an algorithm LearnDL that maintains a decision list h which is consistent
with all examples seen so far. Then, the following theorem applies:

Theorem 2. With m ≥ c
ϵ (n log n+log 1

δ ) examples, with probability 1−δ, LearnDL will be correct
on a new example from D with probability 1− ϵ.

Proof. The argument from Theorem 1 does not use any special properties of conjunctions or the
algorithm. We can apply the same logic here.

Let h ∈ H be a hypothesis with Prx∼D(h(x) ̸= l(x)) > ϵ. The probability that h is not eliminated
after m examples is at most (1− ϵ)m.

The probability that any such ‘bad h’ survives after m examples is at most 4nn!(1− ϵ)m. (This
time, substituting the size of the class of decision lists!)

Setting 4nn!(1− ϵ)m < δ and taking the log of both sides, we see that m ≥ O
(
1
ϵ

)
(n log n+log 1

δ )
suffices.

In general, for an algorithm that learns a consistent hypothesis from a class H, m ≥ c
ϵ (log |H|+

log 1
δ ) examples are sufficient to achieve this guarantee.

2 (ϵ, δ)-PAC-Learning
Definition 3. Given iid samples from an unknown distribution D, labeled by a hypothesis ℓ from a
hypothesis class H, an algorithm A (ϵ, δ)-PAC-learns the hypothesis class H if, with probability 1−δ,
it produces a hypothesis h ∈ H that correctly classifies a random sample from D with probability at
least 1− ϵ, i.e.,

Prx∈D(h(x) = ℓ(x)) ≥ 1− ϵ.

PAC stands for Probably Approximately Correct. Intuitively, it states that the algorithm A is
probably successful (producing a good h with probability 1− δ). A good h is approximately correct
(classifying samples from D correctly with probability 1− ϵ).

Note that this definition says nothing about the efficiency of the algorithm. Usually the efficiency
is judged by time or sample complexity (i.e., the time it takes to process a sample, and the number
of samples that it needs).

2.1 PAC-learning Halfspaces
In section 1, we showed a heuristic for learning an arbitrary hypothesis class H. However, the
number of samples needed depends on log |H|. For the case of halfspaces, H is infinite, so we must
use another method.

Suppose, ∥w∗∥2 ≤ 1, maxx∥x∥2 ≤ 1, and maxx |⟨w∗, x⟩| ≥ γ. At any time, define the set of
consistent hypothesis.

W = {w : ∥w∥2 ≤ 1,∀i⟨w, l(x(i))x(i)⟩ ≥ γ}
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For the next sample x(i+1), divide W into two cases:

W+ = {w ∈ W : ⟨w, x(i+1)⟩ ≥ 0}

W− = {w ∈ W : ⟨w, x(i+1)⟩ < 0}

By predicting the set with the larger volume, we guarantee that either we are correct, or the size
of W is reduced by at least half.

Note that because the margin is gamma, we only need to reduce W to within a ‘cap’ of angle γ.
The set is

Vγ = {w : ∥w∥2 = 1, ⟨w,w∗⟩ ≥ 1− γ2}

Figure 1: The set of points on the sphere where ⟨w,w∗⟩ ≥ 1− γ2

This set is illustrated in red in Figure 1. All vectors in Vγ will correctly classify examples that
obey the margin.

Theorem 4. The number of steps required to find a consistent classifier is O(n log γ).

Proof. The volume of W is reduced by at least half at each step; the initial set is Sn−1 = {w : ∥w∥ =

1}. So, we need to bound log2
Vol(Sn−1)
Vol(Vγ)

.
To do this, we can write both sets as an integral over the first coordinate. Note that when we

fix x1 = t, then by the equation for the sphere:

n∑
i=1

x2
i = 1 →

n∑
i=2

x2
i = 1− t2

Hence, the cap formed by intersecting the sphere with the plane x1 = t is a sphere of radius
1− t2

vol(Sn−1) = 2

∫ 1

0

(1− t2)(n−2)/2Vol(Sn−2) dt

vol(Vγ) =

∫ 1

√
1−γ2

(1− t2)(n−2)/2Vol(Sn−2) dt
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This integral is not straight-forward to evaluate; fortunately, we only need an asymptotic bound, so
we can make some simplifications.

Simplifying this integral∫ 1

√
1−γ2

(1− t2)(n−2)/2 dt ≥
∫ 1

√
1−γ2

(
γ2

)(n−2)/2
dt

= (1−
√
1− γ2)γn−2 dt

= cnγn for a constant c

Since
∫ 1

0
(1− t2)(n−2)/2 dt ≤ 1, the ratio is

Vol(Sn−2)
∫ 1

cos(γ)
(1− t2)(n−2)/2 dt

2Vol(Sn−2)
∫ 1

0
(1− t2)(n−2)/2 dt

≥ cnγn

Taking the logarithm gives us the theorem statement.

3 Ways to label points
Definition 5. For a concept class H and an integer m > 0, let H(m) be the maximum number of
distinct ways a set of m points can be labelled using concepts in H

Example: Intervals in 1-D
Let H = {[a, b] : a, b ∈ R, a < b}; the set of all intervals on the real line.

As illustrated in Figure 2, H(2) = 4, since the two points shown in the plot can be labelled in all
four ways. However, H(3) = 7, since there is a sequence of labels (+−+) which cannot be achieved
with a single interval (but all other labellings are possible!)

Figure 2: The four ways to label a set of points on the real-line with a single interval

Figure 3: A set of three points with an assignment of labels that can’t be achieved by a single
interval
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Rectangles in 2D
Let H = {[a, b]× [c, d] : a, b, c, d ∈ R, a < b, c < d}; the set of all rectangles in R2.

We have H(m) ≤ (m + 1)4. There are (m + 1)2 ways to pick the vertical lines, and (m + 1)2

ways to pick the horizontal lines.
Halfspaces in Rn

Note that in R2, defining a separating line requires 2 points. This generalizes to Rn, where it takes
n points to define a separating hyperplane. We can choose our labelling by picking n points out of
the sample to define the plane.

This gives:

H(m) ≤
(
m

n

)
∗ 2 ≤ mn (1)

3.1 Theorem: Sample Complexity of PAC-Learning
Theorem 6. Suppose we have a true labeling function h ∈ H. For (ϵ, δ)-PAC-Learning, we can
output any h̃ ∈ H that is consistent with m iid examples from the unknown distribution provided
that:

m ≥ c

ϵ

(
logH(2m) + log

1

δ

)
Corollary 7. The sample complexity of (ϵ, δ)-PAC-Learning halfspaces in Rn is c

ϵ

(
n log 1

ϵ + log 1
δ

)
.

Proof. To argue this, we can substitute the bound given in Equation 1 into the theorem statement.
We can use the following inequality for binomial coefficients:

(
2m
n

)
≤

(
2me
n

)n. Substituting:

m ≥ c

ϵ

(
n log

2m ∗ e
n

+ log
1

δ

)
To find a value of m that obeys this inequality, we can replace the m on the right hand side with

something larger than m.
From the above equation, m < c

ϵ (n(log
n10

ϵ ) + log 1
δ ) (for example). Substituting this for m:

c

ϵ

(
n log

(
c

ϵn
(n log

n10

ϵ
+ log

1

δ
)

)
+ log

1

δ

)
=

c

ϵ

(
n(log

1

ϵ
)(1 + o(1)) + log

1

δ

)

Proof of Theorem 6. Let A be the following event:

A: Given m i.i.d. samples from D, there exists an h ∈ H which is correct on all samples, but
PrD(h(x) ̸= l(x)) > ϵ.

To achieve (ϵ, δ)−PAC learning, we want Pr(A) < δ. To bound Pr(A), we will define a different
event.

Draw 2m samples from D, and divide them into two sets S1, S2, with |S1| = |S2| = m. Let B be
the following event.

B: There exists an h ∈ H such that h makes no errors on S1, but h makes at least ϵm
2 errors on S2.

Claim: Pr(B) = Pr(A)Pr(B | A) > 1
2Pr(A).

Proof: Assume that event A is true; i.e., , Prx∼D(h(x) ̸= l(x)) > ϵ. Since each x ∈ S2 is indepen-
dently from D, the expected number of mistakes on S2 is at least ϵm.

Let MS2 be the number of mistakes h makes on S2. So, E[MS2] > ϵm
Event B occurs if MS2 > ϵm/2. Let’s bound the probability that B does not occur using the

Chernoff bound.
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Pr
(
MS2 <

ϵm

2

)
< Pr

(
MS2 <

1

2
E[MS2]

)
≤ e−

ϵm
8

This is less than 1/2 when m > 8/ϵ.
So, Pr(B | A) > 1

2 , giving the claim.
Claim: Pr(B) ≤ H(2m)2−ϵm/2

Proof: Fix 2m points, their true labels, and a hypothesis h which makes at least ϵm/2 errors on this
set. Randomly assign the points to S1 and S2; i.e., S1 = {a1, . . . , am}, S2 = {b1, . . . , bm}.

For B to hold, each point where h makes a mistake must be assigned to S2. The probability of
this is at most 2−ϵm/2, since each sample has a 1/2 probability of being assigned to S2.

The number of possible labelings of 2m points is H(2m), by definition. Thus, taking the union
bound over all possible labels, we have:

Pr(B) ≤ H(2m)2−ϵm/2

This proves the claim. Now, we have Pr(A) < 2Pr(B), and Pr(B) ≤ H(2m)2−ϵm/2. Setting
H(2m)2−ϵm/2 < δ/2 and taking the logarithm of both sides, logH(2m) − ϵm

2 < log(δ/2). Solving
for m:

m >
2

ϵ

(
logH(2m) + log

2

δ

)
For this m, Pr(A) < δ. This proves the theorem.

3.2 (ϵ, δ)-PAC Agnostic Learning
Previously, we have assumed that there exists an h which is consistent on all examples from D. In
practice, this is often an unrealistic assumption. In this section, we define a notion of PAC-learning
in the case where every hypothesis in H has some error.

Definition 8. Let H be a hypothesis class, and let ϵ0 = infh∈H PrD(h(x) ̸= ℓ(x)) be the minimum
achievable error within H.

Given independent samples from D, an algorithm A (ϵ, δ)-PAC agnostic learns the hypothesis
class H if, with probability 1 − δ, it produces a hypothesis h ∈ H that correctly classifies a random
sample from D with probability at most ϵ more than the minimum achievable error, i.e.,

Prx∈D(h(x) ̸= ℓ(x)) ≤ ϵ0 + ϵ.

The proof of sample complexity for this case is very similar to the non-agnostic case. Let errD(h)
denote the fraction of D on which h makes a mistake (disagrees from a fixed labeling function) and
for a subset of labeled examples S, let errS(h) denote the fraction of S on which h differs from the
fixed target. We now bound the sample complexity of simultaneously estimating the error of every
hypothesis in H.

Theorem 9. On a sample S of size m drawn iid from an unknown distribution D, we have that
with probability at least 1− δ, for every h ∈ H,

|errS(h)− errD(h)| ≤ ϵ

provided

m ≥ c

ϵ2

(
logH(2m) + log

1

δ

)
The theorem says that with a sample of size m satisfying the above lower bound, we can estimate

the error of every hypothesis in H, and hence we can output any low error hypothesis on m points
to guarantee low-error (at most ϵ more) on the full distribution. Note the difference from Theorem
6: previously the bound was proportional to 1/ϵ, now it is 1/ϵ2.
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Proof of Theorem 9. Let A be the following event:

A: Given m i.i.d. samples from D, there exists an h ∈ H which has error at most ϵ0 on m samples,
but PrD(h(x) ̸= l(x)) > ϵ+ ϵ0.

To prove the theorem, we want to show that Pr(A) < δ. To bound Pr(A), we will define a
different event.

Draw 2m samples from D, and divide them into two sets S1, S2, with |S1| = |S2| = m. Let B be
the following event.

B: There exists an h ∈ H such that h makes at most ϵ0m errors on S1, but h makes at least ϵm
2 +ϵ0m

errors on S2.

Claim: Pr(B) = Pr(A)Pr(B | A) > 1
2Pr(A).

Proof: Analogous to Theorem 6
Claim: Pr(B) ≤ H(2m)eϵ

2m/8

Proof: Fix 2m points, their true labels, and a hypothesis h which makes at least 2ϵ0m+ ϵm/2 errors
on this set. Randomly assign the points to S1 and S2; i.e., S1 = {a1, . . . , am}, S2 = {b1, . . . , bm}.

For B to hold, the number of mistakes assigned to S1 must be less than the number of mistakes
assigned to S2 by ϵm/2. The probability that this occurs can be bounded by Hoeffding’s inequality,
by eϵ

2m/8.
The number of possible labelings of 2m points is H(2m), by definition. Thus, taking the union

bound over all possible labels, we have:

Pr(B) ≤ H(2m)e−ϵ2m/8

This proves the claim. Now, we have Pr(A) < 2Pr(B), and Pr(B) ≤ H(2m)2−ϵm/2. We can set
H(2m)e−ϵ2m/2 < δ/2, solve for m to achieve the bound in the theorem statement.

4 Useful Concentration Inequalities
In the above proofs, we used two concentration inequalities for the sums of independent, bounded
random variables. We state them here:

Theorem 10 (Chernoff Bound). Let X =
∑n

i=1 Xi be a sum of independent random indicators
(Xi ∈ {0, 1}) with mean µ. Then, for any δ ≥ 0:

P(X > (1 + δ)µ) ≤ exp

(
− µδ2

2 + δ

)

P(X < (1− δ)µ) ≤ exp

(
−µδ2

2

)
Theorem 11 (Hoeffding’s Inequality). Let X =

∑n
i=1 Xi be a sum of independent bounded random

variables (ai ≤ Xi ≤ bi) with mean µ. Then, for any t ≥ 0:

P(|X − µ| > t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
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