
CS 4540/CS 8803: Algorithmic Theory of Intelligence Fall 2023

Lecture 2: Winnow and Weighted Majority
Instructor: Santosh Vempala Lecture date: 8/28,8/30

We recall the Perceptron algorithm discussed in the last lecture. For normal vector ∥w∗∥2 ≤ 1,
samples ∥x∥2 ≤ 1, and margin γ = minx |⟨w∗, x⟩|, we showed that the number of mistakes by the
Perceptron Algorithm is at most 1/γ2.

More generally, the bound we have is

of mistakes ≤ ∥w
∗∥22 maxx ∥x∥22

γ2
.

Viewing x = (x1, · · · , xn) as a feature vector. ∥x∥22 can grow with the dimension. In many
natural settings the unknown hypothesis vector could be sparse, e.g., only k out of n features are
relevant. A natural question is whether we can improve the bound in this setting. In this lecture,
we will discuss another algorithm that works well for sparse concepts.

1 Winnow Algorithm

1.1 Learn disjunction of r relevant variables
Consider labeled data (x, y), where x = (x1, · · · , xn) ∈ {0, 1}n. There are r relevant variables out
of n, denoted as S = {xi1 , · · · , xir} ⊂ {x1, · · · , xn}, the labeling function is

y = l(x) = xi1 ∨ xi2 · · · ∨ xir

For example, let x = (x1, · · ·x5), S = (x2, x4) are the relevant variables. Then

l(1, 0, 1, 0, 0) = 0, l(1, 1, 0, 0, 0) = 1, l(0, 0, 0, 1, 1) = 1, · · ·

The labeling function can also be written as 1(
∑

x∈S x ≥ 1), where 1 is the indicator function.

Algorithm 1 Winnow Algorithm to learn a disjunction of r variables
Start with wi = 1, 1 ≤ i ≤ n.
for each input x do

Predict + if
∑n

i=1 wixi ≥ n and − otherwise.
For a mistake on a positive example, for all i with xi = 1, set wi ← 2wi .
For a mistake on a negative example, for all i with xi = 1, set wi ← wi/2 .

end for

Theorem 1. The number of mistakes made by Winnow on any possible sequence is at most 3r log2 n+
1.

Proof. Denote M+ as # of mistakes on positive examples, and M− as # of mistakes on negative
examples. Each time the algorithm makes a mistake on a positive example, we will double wi.
However, wi cannot exceed n. So we can bound M+ as

M+ ≤ r log2 n.

On a mistake of a positive example, the total weight increases by at most n. On a mistake of a
negative example, the total weight decreases by at least n/2. Since the sum of weights remains
nonnegative, we have

M− ≤ 2M+ + 1

1

where the +1 is to account for the fact that the weights start out at a total of n. By combining all
mistakes, we have

M− +M+ ≤ 3r log2 n+ 1.

1.2 Learn k-out-of-r function
We here generalize the hypothesis class. Let xi ∈ {0, 1}, 1 ≤ i ≤ n. We label the data x =
(x1, · · · , xn) as

l(x) = 1(x1 + · · ·+ xr ≥ k).

Algorithm 2 Winnow Algorithm to learn k-out-of-r function
Start with wi = 1, 1 ≤ i ≤ n.
for each input x do

Predict + if
∑n

i=1 wixi ≥ n and − otherwise.
For a mistake on a positive example, for all i with xi = 1, set wi ← wi(1 + ϵ) .
For a mistake on a negative example, for all i with xi = 1, set wi ← wi/(1 + ϵ) .

end for

The algorithm is a slight generalization of Algorithm 1.1. By choosing ϵ = 1, the algorithm is
the same as Algorithm 1.1. It has the following guarantee.

Theorem 2. The number of mistakes made by Winnow is O(rk log n).

Proof. Denote M+ as # of mistakes on positive examples, and M− as # of mistakes on negative
examples. We note that the total increase in weight on a mistake of positive example ≤ ϵn. After
M+ mistakes on positive examples, the total increase in weight on a mistake of positive examples
≤ ϵnM+. Similarly, after M− mistakes on negative examples, the total decrease in weight on a
mistake of negative examples is at least (n− n

1+ϵ)M− = ϵn
1+ϵM−. Since the total weight is initialized

at n, and stays non-negative, we have

n+ ϵnM+ ≥
ϵn

1 + ϵ
M−

This implies

M− ≤
1 + ϵ

ϵ
+ (1 + ϵ)M+

For a relevant variable xi, it is involved in ai positive mistakes and bi negative mistakes. Since wi

cannot exceed (1 + ϵ)n, we know

ai − bi ≤ log1+ϵ(1 + ϵ)n = 1 + log1+ϵ n.

Summing up over i, and we have
r∑

i=1

ai −
r∑

i=1

bi ≤ r(1 + log1+ϵ n).

On a mistake on a positive example, the weights of at least k relevant variables increase by (1 + ϵ)
factor. On a mistake on a negative example, the weights of at most k− 1 relevant variables decrease
by a (1 + ϵ) factor. This indicates that

r∑
i=1

ai −
r∑

i=1

bi ≥ kM+ − (k − 1)M−

This implies that
kM+ − (k − 1)M− ≤ r(1 + log1+ϵ n)

2

Substituting the bound on M−, we have

M+(k − (k − 1)(1 + ϵ)) ≤ r(1 + log1+ϵ)n+ (k − 1)
1 + ϵ

ϵ

By choosing ϵ = 1
2(k−1) , we get

1

2
M+ ≤ r(1 + log1+ 1

2(k−1)
n) + 2(k − 1)2(1 +

1

2(k − 1)
)

So
M+ = O(rk log n),

and the total number of mistakes can be bounded

M+ +M− = O(rk log n).

1.3 Learning halfspaces
Here we consider learning the halfspace w∗

1x1 + · · · + w∗
nxn ≥ w∗

0 . We first do the following three
pre-processing steps. Since we do not know w∗ in advance, the third step is for analysis only.

1. Scale and shift such that xi ∈ [0, 1], w∗
i ∈ Z.

2. If some w∗
i < 0, we can use yi = 1− xi, and the corresponding term

w∗
i xi = w∗

i (1− yi) = w∗
i − w∗

i yi

This step ensures that w∗
i ≥ 0.

3. For each term i, we make w∗
i copies of xi. Define W ∗ =

∑n
i=1 w

∗
i .

This reduces the problem to learning a w∗
0-out-of-W ∗ function, and we can apply Algorithm 1.2. We

give the guarantee as follows.

Theorem 3. The number of mistakes made by the Winnow Algorithm is at most O(∥w∗∥21 log(n∥w∗∥1)).

Since we assume that the parameters are integers by doing the pre-processing steps, the margin
here was 1. More generally, we get the following bound.

of mistakes = O

(
∥w∗∥21∥x∥2∞ log(n∥w∗∥1)

γ2

)
, where γ := min

x
|⟨w∗, x⟩|.

We can compare it to the bound for the Perceptron algorithm, where the number of mistakes is
upper bounded by O

(
∥w∗∥2

2 maxx ∥x∥2
2

γ2

)
for the same definition of γ.

2 Weighted Majority
Predicting from Expert advice. In this setting, there are n experts, and each expert makes 0/1
predictions. The algorithm makes a prediction based on the predictions of the experts (“advice")
and then the outcome is revealed.

For example, for the question "will it rain today?" on day i, experts Ej , j ∈ [n], each have
predictions in {0, 1}, indicating whether or not it will rain. The algorithm makes predictions taking
into account the predictions of the experts, with the goal of making as few mistakes as possible, as
compared to the “best" expert, i.e., the minimum number of mistakes made by any expert, for any
number of rounds, i.e., days.

Goal: # of mistakes of the algorithm after T days ≲ minimum # of mistakes made by any
expert after T days.

3

2.1 Follow the Leader
One natural strategy is to follow the leader of the experts. In other word, the algorithm predicts
according to the best experts. However, in some bad cases, it can actually make n times as many
mistakes as the best expert. The adversarial case is when the leader we choose, which performs the
best in the past, make a mistake in the current round.

2.2 Weighted Majority
A natural approach is to follow the majority. However, this algorithm could be bad, when there
exist few experts with perfect predictions while the majority of the experts stick to the incorrect
predictions. An effective variant is to use the weighted majority algorithm. The idea is to keep
a weight wi associated with each expert Ei, and the algorithm predicts according to the weighted
majority.

Algorithm 3 Weighted Majority Algorithm
Start with wi = 1, 1 ≤ i ≤ n.
for t = 1, 2, · · · , T do

Predict 1 if
∑

i:Ei=1 wi ≥
∑

i:Ei=0 wi and 0 otherwise.
On a mistake, for every expert Ei that predicts incorrectly, set wi ← wi/2.

end for

Define
MT : # of mistakes by weighted majority after T rounds

mT : # of mistakes by the best expert after T rounds

We can bound MT by the following theorem.

Theorem 4. ∀T , the number of mistakes by weighted majority after T rounds satisfies

MT ≤ 2.5mT + 2.5 log2 n

Proof. After each mistake, the incorrect weights will be halved. Since these incorrect total weights
are higher than the correct weights, after a step of update, the total weights will decrease at least
1/4. So after MT mistakes, the total weights ≤ n(3/4)MT .

Denote the best experts at time T as Ej . Since it updates at most mT times, we have wj ≥
(1/2)mT . Combining the two inequalities, we have

(
1

2
)mT ≤ wj ≤

∑
i

wi ≤ n(
3

4
)MT

This leads to
(
4

3
)MT ≤ n · 2mT

Taking log, and we have

MT log2
4

3
≤ log2 n+mT

This implies

MT ≤
1

log2
4
3

(mT + log2 n) ≤ 2.5mT + 2.5 log2 n

4

Algorithm 4 Randomized Weighted Majority Algorithm
Start with wi = 1, 1 ≤ i ≤ n.
for t = 1, 2, · · · , T do

Predict according to Ei with probability wi/
∑

j wj .
On a mistake, for every expert Ei that predicts incorrectly, set wi ← (1− ϵ)wi.

end for

2.3 Randomized Weighted Majority
We note that we can generalize the update step by setting wi ← (1− ϵ)wi with a flexible variable ϵ.
We also add some randomness. The detailed algorithm is given below.

Theorem 5. For any number of rounds T > 0, the expectated number of mistakes of Randomized
Weighted Majority satisfies

E(MT) ≤ (1 + ϵ)mT +
log n

ϵ

Proof. Let ft be the weight fraction of experts that make a mistake at time t. Let M t be the number
of mistakes made by randomized weighted majority at time t for 1 ≤ t ≤ T . Since we pick each
expert with probability proportional to its weight,

E(M t) = ft and E(MT) =

T∑
t=1

E(M t) =

T∑
t=1

ft.

In expectation, the total weight after T rounds satisfies

E(total weight) ≤ n

T∏
t=1

(ft(1− ϵ) + (1− ft)) = n

T∏
t=1

(1− ϵft).

Let mT be the minimum number of mistakes after T rounds, made by some expert Ej . By our
update rule.

wj ≥ (1− ϵ)mT .

Combining the two inequalities, and we have

(1− ϵ)mT ≤ n

T∏
t=1

(1− ϵft).

By taking log on both sides,

mT log(1− ϵ) ≤ log n+
∑

log(1− ϵft) ≤ log n− ϵ

T∑
t=1

ft = log n− ϵE(MT).

This implies

E[MT] ≤
1

ϵ
(mT log

1

1− ϵ
+ log n) ≤ 1

ϵ
(mT (ϵ+ ϵ2) + log n) = mT (1 + ϵ) +

log n

ϵ
.

Here we used the fact that (1 + x) ≥ ex−x2

for x < 1.

Corollary 6. By choosing ϵ =
√

logn
mT

, we achieve the best bound for Randomized Weighted Majority,

E[MT] ≤ mT + 2
√
mT log n.

The average mistakes made per round is

E[MT]

T
≤ mT

T
+ 2

√
log n

T

5

Proof. We choose ϵ so as to minimize mT (1 + ϵ) + logn
ϵ . Since

mT ϵ+
log n

ϵ
≥ 2

√
mT log n,

and the equality holds when ϵ =
√

logn
mT

, we know

E[MT] ≤ mT + 2
√

mT log n

Consider the average mistakes made per round, we have

E[MT]

T
≤ mT

T
+ 2

√
mT log n

T 2
≤ mT

T
+ 2

√
log n

T

The last inequality comes from mT ≤ T . When T → ∞, the second term → 0. So the number of
mistakes per round made by the algorithm goes to that of the best expert.

6

