
CS 4540/CS 8803: Algorithmic Theory of Intelligence Fall 2023

Lecture 1: The Perceptron Algorithm
Instructor: Santosh Vempala Lecture date: 8/21,8/23

1 The Perceptron Algorithm
Binary classification is to classify data into two categories. Given data with labels, one expects to
learn the classifier. Inspired by the neurons from brain, the Perceptron algorithm was introduced to
learn the binary classifier from the labeled data.

1.1 Setting
Consider labeled data (x, l(x)), where x ∈ X ⊂ Rn, l(x) ∈ {1,−1}. Each data point is labeled as

l(x) = sign(⟨w∗, x⟩) = sign(
n∑

i=1

w∗
i xi).

Here w∗ ∈ Rn is the unknown normal vector to a separating hyperplane. We assume that ∥w∗∥ =
1, ∥x∥ ≤ 1. Moreover, we denote that the margin for w∗ as γ := minx∈D |⟨w∗, x⟩|. This implies that
for any x with label l(x) = 1, ⟨w∗, x⟩ ≥ γ; for any x with label l(x) = −1, ⟨w∗, x⟩ ≤ −γ.

!!

"∗

Figure 1: A sketch for the binary classification with normal vector w∗ and margin γ.

1.2 Algorithm and Analysis

Algorithm 1 Perceptron Algorithm
Start with w = 0.
for each input x do

Predict sign(⟨w, x⟩)
On a mistake, set w ← w + l(x)x

end for

Theorem 1.1. The number of mistakes made by the Perceptron Algorithm on any input sequence
is at most 1/γ2.

1

Proof. Consider the potential function ⟨w,w∗⟩/∥w∥, starting at 0. Whenever the algorithm makes
a mistake, we update as w̃ := w + l(x)x. For the numerator, we have

⟨w̃, w∗⟩ = ⟨w + l(x)x,w∗⟩ = ⟨w,w∗⟩+ l(x)⟨x,w∗⟩ ≥ ⟨w,w∗⟩+ γ

The last inequality comes from the definition of margin γ. For the denominator of the potential
function, we have

∥w̃∥2 =⟨w̃, w̃⟩ = ⟨w + l(x)x,w + l(x)x⟩ = ⟨w,w⟩+ ⟨x, x⟩+ 2l(x)⟨w, x⟩

Since x is incorrectly predicted by w, we know l(x) ̸= sign(⟨w, x⟩). This implies that l(x)⟨w, x⟩ ≤ 0.
Also we assume that ∥x∥ is bounded by 1. So we have

∥w̃∥2 ≤ ⟨w,w⟩+ ⟨x, x⟩ ≤ ∥w∥2 + 1

So after the algorithm makes T mistakes, the numerator is ⟨w̃, w∗⟩ ≥ γT , while the denominator
is ∥w̃∥ ≤

√
T . By the Cauchy-Schwarz inequality, |⟨w̃, w∗⟩| ≤ ∥w̃∥∥w∗∥ = ∥w̃∥, which implies that

⟨w̃, w∗⟩/∥w̃∥ ≤ 1 at all time steps. Therefore,

1 ≥ ⟨w̃, w
∗⟩

∥w̃∥
≥ γT√

T
= γ
√
T

It follows that T ≤ 1/γ2.

1.3 Lower Bound for the Perceptron Algorithm
Theorem 1.1 shows that the number of mistakes made by the Perceptron Algorithm is bounded by
1/γ2. However, when the margin is tiny, for instance, γ ∼ 1/2n, the number of mistakes can be as
large as 2O(n), which is not polynomial with respect to the input dimension n.

Here we construct a set of data, and show that for any given order, the Perceptron algorithm
needs to see at least 2O(n) examples before reaching the truth. For each data x(i) ∈ Rn with i
non-zero entries, we construct as follows.

x l(x)

x(1) (1, 0, 0, 0, · · · , 0) 1

x(2) (1,−1, 0, 0, · · · , 0) −1
x(3) (−1,−1, 1, 0, · · · , 0) 1

x(4) (1, 1, 1,−1, 0, · · · , 0) −1
· · ·

x(i) ((−1)i, · · · , (−1)i, (−1)i+1, 0, · · · , 0) (−1)i+1

Lemma 1.2. For a unit vector w∗ ∈ Rn that classify the data above correctly, its i-th coordinate
satisfies w∗

i ≥ 2i−1.

Proof. By rescaling w∗, we can assume wlog that the margin is γ = 1. Since l(x(1)) = 1, we have
⟨w∗, x(1)⟩ ≥ 1. This derives that w∗

1 ≥ 1. Similarly we have ⟨w∗, x(2)⟩ ≤ −1, which derives that
w∗

1 − w∗
2 ≤ −1, and thus w∗

2 ≥ w∗
1 + 1. More generally, for odd i,

⟨w∗, x(i)⟩ = −
i−1∑
j=1

w∗
j + w∗

i ≥ 1 ⇒ w∗
i ≥

i−1∑
j=1

w∗
j + 1

For even i,

⟨w∗, x(i)⟩ =
i−1∑
j=1

w∗
j − w∗

i ≤ −1 ⇒ w∗
i ≥

i−1∑
j=1

w∗
j + 1

2

So we know w∗
1 ≥ 1 and for each i ≥ 2, w∗

i ≥
∑i−1

j=1 w
∗
j + 1. By induction, we know for any i ∈ [n],

w∗
i ≥ 2i−1.

Corollary 1.3. To achieve the correct classifier w∗, the Perceptron algorithm needs at least 2n−1

examples with mistakes.

Proof. In each update step of the Perceptron algorithm, we let w ← w + l(x)x. By the property of
the data constructed above, the absolute value of the change of w is at most one in each coordinate.
By Lemma 1.2, w∗

n ≥ 2n−1. So we need at least 2n−1 update steps.

2 Modified Perceptron Algorithm
In the last section, we saw that the Perceptron algorithm cannot be polynomial when the margin
is tiny. Here we consider the setting where we only care about the data that are away from the
margin. Specifically, given a parameter σ > 0, we would like to find w s.t. sign(⟨w, x⟩) is the correct
label for all x satisfying

| cos(w, x)| := |⟨w, x⟩|
∥w∥∥x∥

≥ σ.

We give the algorithm as follows. Instead of updating whenever we make a mistake using current w,
here we update when the algorithm makes a mistake on a point far from the threshold (as measured
by σ).

Algorithm 2 Modified Perceptron Algorithm
Start with w ← random unit vector.
for each input x do

if l(x) ̸= sign(⟨w, x⟩) and | cos(w, x)| ≥ σ then
w ← w − ⟨w, x̄⟩x̄, where x̄ = x/∥x∥

end if
end for

Since we initialize w as a random vector, we give a high probability guarantee for the algorithm.
The claim about the inner product of a random unit vector with a fixed unit vector will be proved
in a later class.

Theorem 2.1. With probability at least 1/8, the number of mistakes made by Algorithm 2 is at
most log n/σ2.

Proof. Here we consider the potential function cos(w,w∗) = ⟨w,w∗⟩
∥w∥∥w∗∥ . By the random initialization,

with probability at least 1/8, ⟨w,w∗⟩ ≥ 1/
√
n. Then we consider each update step w → w̃. For the

numerator of the potential function, since sign(⟨w, x⟩) ̸= sign(⟨w∗, x⟩),

⟨w̃, w∗⟩ = ⟨w,w∗⟩ − ⟨w, x̄⟩⟨w∗, x̄⟩ ≥ ⟨w,w∗⟩

Since | cos(w, x̄)| = ⟨w,x̄⟩
∥w∥∥x̄∥ ≥ σ, we have ⟨w, x̄⟩ ≥ σ∥w∥. Then for the denominator of the potential

function,
∥w̃∥2 = ∥w∥2 + ⟨w, x̄⟩2∥x̄∥2 − 2⟨w, x̄⟩2 = ∥w∥2 − ⟨w, x̄⟩2 ≤ ∥w∥2(1− σ2)

After T steps,

1 ≥ cos(w,w∗) ≥ 1√
n

1

(1− σ2)T/2

So we have
(1− σ2)T/2 ≥ 1√

n

3

And thus (
1

1− σ2

)T

≤ n

T ≤ lnn

ln(1/(1− σ2)
≤ lnn

σ2

where in the last inequality we used the fact that 1 + x ≤ ex as follows:

(1− σ2) ≤ e−σ2

=⇒ 1

1− σ2
≥ eσ

2

=⇒ ln(1/(1− σ2)) ≥ σ2 =⇒ 1

ln(1/(1− σ2))
≤ 1

σ2
.

Algorithm 3 Modified Perceptron Algorithm
for round i = 1, 2, · · · , log4/3 1/δ do

implement Algorithm 2 with output w and the number of mistakes
if the number of mistakes made in this around ≥ lnn/σ2 then

continue to the next round
else

output w
end if

end for

We can extend the algorithm by doing it repeatedly so that the algorithm holds with probability
1− δ. See Algorithm 3 for the algorithm and Corollary 2.2 for the guarantee.

Corollary 2.2. With probability at least 1 − δ, the number of mistakes of Algorithm 3 is at most
O(logn log(1/δ)

σ2).

Proof. By Theorem 2.1, the probability that one round fails is 3/4. So the probability that the
Algorithm 3 fails is (3/4)log4/3(1/δ) = δ. So the algorithm holds with probability 1− δ. So the total
number of mistakes are

log4/3(1/δ) log n/σ
2 = O

(
log n log(1/δ)

σ2

)

3 Nonlinear Classifier
We can extend the setting to nonlinear ones. For example, we can label the data outside a ball
B(x0, r) as +1 and inside it as −1. That is, l(x) = sign(∥x − x0∥2 − r2). More generally, we have
the form

l(x) = sign(x⊤Ax− b)

Take an example of l(x) = sign(x2
1 + x2

2 − 3x1x2) for x ∈ R2. We can reduce the problem to be the
linear one by mapping

(x1, x2)→ (x2
1, x

2
2, x1x2, x1, x2)

Then we get a linear classifier in the new coordinates with w∗ = (1, 1,−3, 0, 0).

4

