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1 Rademacher Complexity

1.1 Motivation for a new complexity measure
Given a function class H, we have studied how to derive the sample complexity to learn a hypothesis
h ∈ H using H(m), the maximum number of distinct ways to label m points. We note that H(m) is
distribution independent. In some cases, the distribution independence is nice because it works for
any data distribution. On the other hand, the bound we get may not be tight for some distributions
that are benign than the worst case. Furthermore, H(m) only applies to binary classification, but
we are often interested in generalization bounds for multi-class classification and regression as well.
Here we introduce Rademacher complexity, which is a more modern notion of complexity that is
distribution dependent and defined for any class real-valued functions.

1.2 Definitions
Given a space Z and a distribution D|Z . Let S = {z1, · · · , zm} be a set of samples drawn iid from
D|Z . Let H be a class of functions h : Z → R.

Definition 1 (Empirical Rademacher Complexity). The empirical Rademacher Complexity of H is
defined as

R̂m(H) = E
σ

iid∼{±1}

[
sup
h∈H

(
1

m

m∑
i=1

σih(zi)

)]
where σ1, · · · , σm are independent random variables uniformly chosen from {−1, 1}. We call such
random variables as Rademacher variables.

Definition 2 (Rademacher Complexity). The Rademacher Complexity of H is defined as

Rm(H) = ED[R̂m(H)] = E
z

iid∼ D

[
E

σ
iid∼{±1}

[
sup
h∈H

(
1

m

m∑
i=1

σih(zi)

)]]

Intuitively, the supreme measures the maximum correlation between h(zi) and σi over h ∈ H.
By taking expectation over the Rademacher variable σ, the empirical Rademacher complexity of
H quantifies the capacity of functions from H to fit random noise on a fixed sample set S. The
Rademacher Complexity then evaluates the extent to which H can fit noise on a dataset drawn from
the distribution D.

1.3 Dependence on Distribution
To give the intuition that Rademacher complexity depends on the distribution, we consider an
extreme example P as a point mass. That is z = z0 almost surely. Assume that −1 ≤ h(z0) ≤ 1 for
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all h ∈ H. Then

Rm(H) = E
z

iid∼ D

[
E

σ
iid∼{±1}

[
sup
h∈H

(
1

m

m∑
i=1

σih(zi)

)]]

= E
σ

iid∼{±1}

[
sup
h∈H

(
1

m
h(z0)

m∑
i=1

σi

)]

≤ E
σ

iid∼{±1}
| 1
m

m∑
i=1

σi|

≤ E
σ

iid∼{±1}

√√√√( 1

m

m∑
i=1

σi

)2

≤ 1

m

√√√√Eσ

(
m∑
i=1

σi

)2

Jensen’s Inequality

=
1

m

√√√√Eσi,σj

m∑
i,j=1

σiσj

=
1

m

√√√√Eσi

m∑
i=1

σ2
i

=
1

m

√
m =

1√
m

This bound does not depend on H. This example illustrates that a bound on the Rademacher
complexity can sometimes depend only on the (known) distribution of the Rademacher random
variables.

2 Generalization Bounds

2.1 Uniform Convergence
A central objective of learning theory is to achieve strong generalization, meaning that a hypothesis
that performs well on the training data should also perform well on unseen data. We now present
a uniform convergence result utilizing Rademacher complexity, which allows us to establish a more
comprehensive generalization bound.

For h ∈ H, we denote the empirical mean over a sample S as ÊS [f(z)] :=
1
|S|
∑

z∈S f(z). Then
we have the following theorem.

Theorem 3. For a distribution D|Z and parameter δ ∈ (0, 1). If H ⊆ {h : Z → [a, a + 1]} and
S = {z1, · · · , zm} is drawn i.i.d. from D|Z then with probability ≥ 1− δ over the draw of S, for any
h ∈ H,

ED[h(z)] ≤ ÊS [h(z)] + 2Rm(H) +

√
ln(1/δ)

2m
.

Furthermore, with probability 1− δ, for any h ∈ H,

ED[h(z)] ≤ ÊS [h(z)] + 2R̂m(H) + 3

√
ln(2/δ)

2m
.
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2.2 Generalization
Consider a binary classification, where X = Rd, Y = {±1}. For any h : X → Y , we consider the 0-1
loss function lh : Z → R. That is,

lh(z) = lh(x, y) = 1h(x)̸=y =
1− yh(x)

2
.

Let L(H) = {lh : h ∈ H}, then we can compute its Rademacher complexity as

Rm(L(H)) = E
xi,yi,σi

[
sup
h∈H

1

m

m∑
i=1

σi
1− yih(xi)

2

]

= E
xi,yi,σi

[
1

m

m∑
i=1

σi +
1

2
sup
h∈H

1

m

m∑
i=1

−σiyih(xi)

]

=
1

2
E

xi,yi,σi

[
sup
h∈H

σih(xi)

]
=
1

2
Rm(H)

Denote êrrS(h) := ÊS [lh(z)] =
1
m

∑m
i=1 lh(zi) as the training error and and errD(h) := ED[lh(z)]

as the generalization error. By Theorem 3, we get can bound the generalization error as follows.

Corollary 4. For H ⊂ {h : X → Y } and 0− 1 loss, we have

errD(h) ≤ ˆerrS(h) +Rm(H) +

√
ln(1/δ)

2m

2.3 Proof
To prove the generalization bounds using Rademacher complexity, we will use the following concen-
tration bound.

Theorem 5 (McDiarmid Inequality). Let x1, · · · , xn be independent random variables taking on
values in a set A, and let c1, · · · , cn be positive real constants. If f : An → R satisfies

sup
x1,··· ,xn,x′

i∈A

|f(x1, · · · , xi, · · · , xn)− f(x1, · · · , x′
i, · · · , xn)| ≤ ci,

for 1 ≤ i ≤ n, then

Pr[f(x1, · · · , xn) ≥ E[f(x1, · · · , xn)] + ϵ] ≤ e
−2ϵ2∑n
i=1

c2
i

Proof of Theorem 3. For a fixed function h ∈ H, by the definition of supremum,

ED[h(z)] ≤ ÊS [h(z)] + sup
g∈H

(
ED[g(z)]− ÊS [g(z)]

)
Denote

ϕ(S) = sup
g∈H

(
ED[g(z)]− ÊS [g(z)]

)
We would like to bound ϕ in terms of its expectation by McDiarmid Inequality. Specifically we claim
that

sup
z1,··· ,zm,z′

m

|ϕ(z1, · · · , zi, · · · , zm)− ϕ(z1, · · · , z′i, · · · , zm)| ≤ 1

m
.

We leave the proof in Lemma 6. Then we apply McDiarmid Inequality and we have

Pr[ϕ(S) ≥ E[ϕ(S)] + t] ≤ e
−2t2∑m
i=1

1
m2 = e−2t2m
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So for t ≥
√

ln(1/δ)
2m , the probability is less than δ. That is with probability at least 1− δ,

ED[h(z)] ≤ ÊS [h(z)] + ES

[
sup
g∈H

(
ED[g(z)]− ÊS [g(z)]

)]
+

√
ln(1/δ)

2m
. (1)

Next we will bound the expectation of ϕ(S) in terms of the Rademacher complexity of H. Let
S̃ = {z̃1, · · · , z̃m} be a set independently drawn from S. Since

ES̃ [ÊS̃ [g(z)]] = ED[g(z)], ES̃ [ÊS [g(z)]] = ÊS [g(z)]

we can rewrite the expectation

ES

[
sup
g∈H

(
ED[g(z)]− ÊS [g(z)]

)]
=ES

[
sup
g∈H

ES̃

[
ÊS̃ [g(z)]− ÊS [g(z)]

]]
=ES

[
sup
g∈H

ES̃

[
1

m

m∑
i=1

g(z̃i)−
1

m

m∑
i=1

g(zi)

]]

=ES

[
sup
g∈H

ES̃

[
1

m

m∑
i=1

(g(z̃i)− g(zi))

]]

Since sup is convex, we use Jensen’s Inequality to move sup inside the expectation.

ES

[
sup
g∈H

ES̃

[
1

m

m∑
i=1

(g(z̃i)− g(zi))

]]
≤ ES,S̃

[
sup
g∈H

1

m

m∑
i=1

(g(z̃i)− g(zi))

]

Since S and S′ are iid, multiplying each term in the summation by a Rademacher variable σi does
not change the distribution. That gives us

ES,S̃

[
sup
g∈H

1

m

m∑
i=1

(g(z̃i)− g(zi))

]
=ES,S̃,σ

[
sup
g∈H

1

m

m∑
i=1

σi(g(z̃i)− g(zi))

]

≤ES,S̃,σ

[
sup
g∈H

(
1

m

m∑
i=1

σig(z̃i)

)
+ sup

g∈H

(
1

m

m∑
i=1

σig(z̃i)

)]

=Eσ,S

[
sup
g∈H

(
1

m

m∑
i=1

σig(zi)

)]
+ Eσ,S̃

[
sup
g∈H

(
1

m

m∑
i=1

σig(z̃i)

)]
=2Rm(H)

Combining with Equation (1), we get

ED[h(z)] ≤ ÊS [h(z)] + 2Rm(H) +

√
ln(1/δ)

2m
.

To show the second half, we note that R̂m(H) satisfies McDiarmid’s Inequality with constant 1/m.
So we can apply McDiarmid’s Inequality to bound R̂m(H) using Rm(H).

Lemma 6. Denote
ϕ(S) = sup

g∈H

(
ED[g(z)]− ÊS [g(z)]

)
Then we have

sup
z1,··· ,zm,z′

m

|ϕ(z1, · · · , zi, · · · , zm)− ϕ(z1, · · · , z′i, · · · , zm)| ≤ 1

m
.
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Proof. Let S = z1, · · · , zm, S′ = z1, · · · , z′j , · · · , zm. By definition,

|ϕ(S)− ϕ(S′)| =
∣∣∣∣sup
h∈H

(
ED[h(z)]− ÊS [h(z)]

)
− sup

h∈H

(
ED[h(z)]− ÊS′ [h(z)]

)∣∣∣∣
Let h∗ ∈ H be the maximizing function for the supremum in ϕ(S). Then by definition of supremum,
h∗ can at best maximize the ϕ(S′) term as well. Then we have

|ϕ(S)− ϕ(S′)| =
∣∣∣∣ED[h(z)]− ÊS [h(z)]− sup

h∈H

(
ED[h(z)]− ÊS′ [h(z)]

)∣∣∣∣
≤
∣∣∣ED[h(z)]− ÊS [h(z)]− ED[h∗(z)] + ÊS′ [h∗(z)]

∣∣∣
=
∣∣∣ÊS′ [h∗(z)]− ÊS [h

∗(z)]
∣∣∣

=

∣∣∣∣∣ 1m∑
z∈S

h∗(z)− 1

m

∑
z∈S′

h∗(zi)

∣∣∣∣∣
Since S and S′ differ in only one element,

|ϕ(S)− ϕ(S′)| ≤ 1

m

∣∣∣∣∣∣
∑
i ̸=j

h∗(zi)−
∑
i̸=j

h∗(zi) + h∗(zj)− h∗(z′j)

∣∣∣∣∣∣
=

1

m

∣∣h∗(zj)− h∗(z′j)
∣∣

≤ 1

m
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