
CS 4540/CS 8803: Algorithmic Theory of Intelligence Fall 2023

Lecture 12: Neural Networks
Instructor: Santosh Vempala Lecture date: 11/6, 11/8
Scribed by: Mirabel Reid, Xinyuan Cao

1 Architecture
A neural network is a function f : Rn → Rk. Let σ : R→ R be some activation function. The output
of a neural network can be defined as follows:

y = σ(W (l)σ . . . σ(W (2)σ(W (1)x)) . . .)

where W (i) ∈ Rni×ni+1 .
The choice of activation function σ is important for the behavior of the neural network. If σ is

linear (for example, σ(x) = x), then f is also a linear function.

y = W (l)W (l−1) . . .W (2)W (1)x = Wx

So, the choice of σ should be nonlinear.

2 Training Algorithms

2.1 Defining the Loss Function
Suppose we are trying to predict from a sequence of labelled data points {(xi, yi)}Mi=1 drawn from a
distribution. For each (x, y), the neural network outputs a prediction ỹ.

A natural idea for a loss function is zero-one loss, which counts the number of data points that the
neural network predicts incorrectly. Note that when the data and the neural network architecture are
given, the loss is defined as a function of the parameters of the network, the weights W (1), . . . ,W (l).

L0,1(W ;x, y) =

M∑
i=1

1{yi ̸= ỹi}

However, this loss function is restrictive if σ is a continuous function. It is also possible to define
the loss as an error function - the distance between the prediction and the true label.

L(W ;x, y) =
1

M

M∑
i=1

∥yi − ỹi∥2

2.2 Gradient Descent
Let L(w;x, y) be the loss function. Consider the goal of finding the value of w∗ which minimizes the
loss. At the minimum, ∇L(w∗;x, y) = 0. (Keep in mind that ∇f(x) = 0 does not imply that x is
the global minimum in general- it could be a local minimum, maximum, or saddle point).

To find a point where ∇f = 0, we can use the following update function, parameterized by η

x(k+1) = x(k) − η∇f(x(k)) (1)

Theorem 1. Let f : Rn → R be differentiable, and ∇f be L-Lipschitz. Then gradient descent
(Equation 1) with η = 1

L converges to an x̂ with ∥∇f(x̂)∥2 ≤ ϵ in at most 2L(f(x(0))−f(x∗))
ϵ2 steps.

1

Proof. To prove this, we will use Taylor’s theorem for 1-dimensional functions.

Lemma 2. Let g : R → R be continuous and twice-differentiable on the interval [a, b]. Then, there
exists a z ∈ [a, b] such that g(b) = g(a) + (b− a)g′(a) + 1

2g
′′(z)(b− a)2.

Now, let g(t) = f((1 − t)x + ty) for a fixed x, y ∈ Rn. Then, g′(t) = ⟨y − x,∇f((1 − t)x + ty)⟩.
By Taylor’s theorem, there exists a z ∈ [0, 1] such that:

g(1) = g(0) + g′(0) + g′′(z)

Substituting the definition of g, and letting u = (1− z)x+ zy:

f(y) = f(x) + ⟨y − x,∇f(x)⟩+ 1

2
(y − x)⊤∇2f(u)(y − x)

Now, we can analyze the gradient update step, setting y = x− η∇f(x).

f(x− η∇f(x)) = f(x)− ⟨η∇f(x),∇f(x)⟩+ 1

2
η2∇f(x)⊤∇2f(u)∇f(x)

≤ f(x)− η∥∇f(x)∥2 + 1

2
η2L∥∇f(x)∥2) using the Lipschitz property

= f(x)− (η − 1

2
η2L)∥∇f(x)∥2

≤ f(x)− 1

2L
∥∇f(x)∥2 substituting η =

1

L

∥∇f(x)∥2 ≤ 2L(f(x)− f(x− η∇f(x)))

This implies that after T = 2L(f(x(0))−f(x∗))
ϵ2 steps, ∥∇f(x(T))∥2 ≤ ϵ

When f is convex as well, we can show that this approaches a global minimum f(x∗). If a
function f : Ω→ R is convex, it has the following properties:

1. ∀x, y ∈ Ω,∀α ∈ [0, 1],
f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

2. If f is differentiable, ∀x, y ∈ Ω,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩

3. If f is twice differentiable, ∀x ∈ Ω,
∇2f(x) ≥ 0

Theorem 3. Let f : Rn → R be differentiable and convex, and ∇f be L-Lipschitz. Then, after k
steps, gradient descent (Equation 1) with η = 1

L converges to

f(x(k))− f(x∗) ≤ 2LR2

k + 4

where R2 = max
x:f(x)≤f(x∗)

∥x− x∗∥2.

Proof. We have shown that

f(x(k+1)) ≤ f(x(k))− 1

2L
∥∇f(x(k))∥2

That is
f(x(k+1))− f(x∗) ≤ f(x(k))− f(x∗)− 1

2L
∥∇f(x(k))∥2

2

Denote ϵk := f(x(k))− f(x∗). That is,

ϵk+1 ≤ ϵk −
1

2L
∥∇f(x(k))∥2

By convexity of f ,
f(x∗) ≥ f(xk) + ⟨∇f(x(k)), x∗ − x(k)⟩

This implies
ϵk ≤ ⟨∇f(x(k)), x(k) − x∗⟩ ≤ ∥∇f(x(k))∥ · ∥x(k) − x∗∥

Square both sides,

∥∇f(x(k))∥2 ≥ ϵ2k
∥x(k) − x∗∥2

Substituting and we have

ϵk+1 ≤ ϵk −
1

2L
∥∇f(x(k))∥2 ≤ ϵk −

1

2L

ϵ2k
∥x(k) − x∗∥2

≤ ϵk −
ϵ2k

2LR2

Then we have
1

ϵk+1
− 1

ϵk
=

ϵk − ϵk+1

ϵk · ϵk+1
≥ ϵk − ϵk+1

ϵ2k
≥

ϵ2k
2LR2

ϵ2k
=

1

2LR2

Summing up over k, we have
1

ϵk
≥ 1

ϵ0
+

k

2LR2

On the other hand, we can bound ϵ0 by Taylor expansion. There exists z ∈ (x(0), x∗) such that

ϵ0 = f(x(0))− f(x∗) =⟨∇f(x∗), x(0) − x∗⟩+ 1

2
(x(0) − x∗)⊤∇2f(z)(x(0) − x∗)

=
1

2
(x(0) − x∗)⊤∇2f(z)(x(0) − x∗) By optimality of x∗

≤1

2
L∥x(0) − x∗∥2 By Lipschitz

≤LR2

2

This implies that
1

ϵk
≥ 1

ϵ0
+

k

2LR2
≥ 2

LR2
+

k

2LR2
=

k + 4

2LR2

That is,

ϵk ≤
2LR2

k + 4

2.3 Backpropagation
Given a feed forward network with parameter w, we use gradient descent to optimize over w to
achieve small training error. Given data (xi, y(xi)), 1 ≤ i ≤ m and its estimator ỹi := ỹ(xi, w) with
parameter w, we would like to minimize the empirical risk.

err(w) =
1

m

m∑
i=1

∥y(xi)− ỹ(xi, w)∥2

To minimizing err(w), we do the gradient descent with step size η. The update rule is

w ← w − η∇err(w)

3

By chain rule,

∂err(w)
∂wij

=
∂err(w)

∂ỹ
· ∂ỹ

∂wij
= −2(y − ỹ) · ∂ỹ

∂wij
(2)

Now if we describe explicitly the operation from the second to last layer to the last layer. ỹ =
σ(
∑

j αjzj), where σ is the activation function, zj is the logit of the second to last layers and αj is
the weight on the last layer. Then we can apply chain rule again, and get

∂ỹ

∂αj
= σ′(

∑
k

αkzk)zj (3)

By combining Equation (2) and Equation (3), we get the partial derivative of err(w) with respect
to the last layer parameter wj .

∂err(w)
∂wj

= −2(y − ỹ)σ′(
∑
k

αkzk)zj

In the same way, we can pass the derivative message from the top layer of the neural network to
the bottom layer and get the partial derivative of err(w) with respect to the weights in all layers
efficiently. This process is called backpropagation.

2.4 Activation Function
The activation function σ : R → R can add the nonlinearty of the function to be represented. We
list two common activation functions with their derivative here.

1. Sigmoid.

σ(x) =
ex

1 + ex
, σ′(x) = σ(x)(1− σ(x))

2. ReLU.

σ(x) = max(x, 0), σ′(x) =

{
1 for x ≥ 0

0 for x < 0

3 Expressiveness
We would like to study the expressiveness of the neural networks. The Universal Approximation
Theorem states that a feed-forward network with a single hidden layer containing a finite number of
neurons can approximate continuous functions on compact subsets of Rn, under mild assumptions on
the activation function. This means that such a network can approximate any function to a desired
degree of accuracy given enough neurons in the hidden layer. Here we would like to study the
expressiveness of some simpler function class. Specifically, we would like to approximate a function
with the basis from some particular function class.

3.1 Polynomials
For a function f : R→ R,∀x, a ∈ R, by Taylor expansion, there exists z ∈ [a, x] such that

f(x) = f(a)+ f ′(a)(x− a)+
1

2
f ′′(a)(x− a)2 + · · ·+ 1

k!
f (k)(a)(x− a)k +

1

(k + 1)!
f (k+1)(z)(x− a)k+1

In other words, we can approximate f(x) with a linear combination of polynomials up to order k
(which we denote as fk(x)) with approximation error

|f(x)− fk(x)| ≤
1

(k + 1)!
f (k+1)(z)(x− a)k+1

4

3.2 Fourier Series
For any function f : [−π, π]→ R. We can decompose f(x) with respect to cos(jx) and sin(jx), j ∈ Z
as follows.

f(x) = a0 +

∞∑
j=1

aj cos(jx) +

∞∑
j=1

bj sin(jx)

where aj = 1
π

∫ π

−π
f(x) cos(jx) dx, bj = 1

π

∫ π

−π
f(x) sin(jx) dx. The coefficient aj can be seen as the

inner product of f(x) and cos(jx) and bj can be seen as the inner product of f(x) and sin(jx).
{cos(jx), sin(jx)} constructs an orthogonal basis.

3.3 Sigmoidal Function
Theorem 4. A two-layer neural network with sigmoidal (or similar) activation functions gives a
universal approximation.

We call a function σ : R→ R to be sigmoidal if

σ(x) =


0 for x→ −∞
monotonically non-decreasing for −∞ < x <∞
1 for x→∞

The theorem can be shown by representing cos(jx) using sigmoidal functions. Specifically, we
partition the domain into small intervals [x1, x2], [x2, x3], · · · , [xt−1, xt]. Then we can approximate
cos(jx)1x∈[xi,xi+1] using sigmoidal functions. So we can approximate

cos(jx) =

t−1∑
i=1

cos(jx)1x∈[xi,xi+1]

using sigmoidal functions (we let t→∞).

5

