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1 Block Models

The motivation for this section is to define a random graph model that can approximate different
properties of real-world graphs.

Consider the random graph model G(n,p), where each edge is independently present with prob-
ability p. Denote this model [p].

Suppose we want to model a different type of graph; for example, consider a graph G = (V, E)
where V = JUC, which connects a job j, to a candidate c if ¢ is qualified for j. In this case, we will
never connect a job to a job or a candidate to a candidate. So, to model this with a random graph,
we might set P(ej.) = p, while P(ej, j,) = P(éc, ,¢,) = 0. Denote this model with the following
p
0
probability of an edge between them is p.

In general, suppose that the set of vertices are partitioned into k groups, V =V, U Vo U ... V.
Say that if v € V; and u € Vj, P(eyn) = pi,j; that is, the edge probability is some number that
depends on the groups that the endpoints belong to. In a similar way, we can denote this model
with a k x k matrix:

matrix: . This tells us that if one vertex is in group 0 and the other vertex is in group 1, the

P11 P12 - Dik
P21 P22 1 D2k
Pr1 Prk2 - DPkk

This graph model is known as a stochastic block model.

2 The Regularity Lemma

The follow lemma shows that for any dense matrix of size n, there exists a block model that approx-
imates it in a specific useful way. Crucially, the number of blocks does not depend on n.

Lemma 1 (Szemerédi’s Regularity Lemma). Let G be a dense graph. Define, for any X, Y C [n]

d(X,Y) = Tgﬁ‘;fﬁ = He“’";uxellj;’r)ey}‘ . For anye > 0, 3k = k(e), and 3 a partition V = VoUWV U- - UV},

with the following sizes:

Vol <en, [Vi|=[Va| =--- = |V
such that the following holds: For all but ek?® pairs (i,7) with 1 <i,j <k (i = j allowed),

VX C ‘/HY - ‘/J with ‘X|7 |Y‘ > 6|‘/i|7 |d(X7Y) 7d(‘/27vvj)| > €

The lemma has a lot of pieces, but essentially it makes the following promise: it is possible to
divide V into a finite (in n) number of groups such that {V;} approximate the quantity d(X,Y)
for any subset of the groups. Preserving this quantity turns out to help for preserving many other
graph properties as well - for example, it approximately preserves all cuts in the graph.

A downside of this lemma is that the constant k is a very large function of € - it is proportional
to a tower function of height O(1/¢). The following lemma weakens the result slightly, but gives a
much better dependence on e.

First, we define a useful metric for analyzing matrices: the cut norm.



Definition 2 (Cut Norm). For any A € R",
Allg = max A
Il = g, | 3 Ao

If ||A — Bl|o < en?, we say that B e-approzimates A in cut norm.

Definition 3 (Cut Matrix). A cut matriz is a matric B € R™*™ where there exists a contiguous
submatriz, with indices S C [m],T C [n], such that B;; = c1,Yi € S,j € T, and B;; is zero
everywhere else. We denote B = ¢(S,T,c1). That is, B is of the following form:

Bicl

o O O
o = O
o O O

where the 1 is a rectangle of 1’s and the rest of the matrix has all zero entries.

Lemma 4 (Weak Regularity Lemma). VA € R™*" Ve > 0, 3 a set of cut matrices By, Ba, ..., B,
where k < 1/€% such that:

|A—=(Bi+ By + -+ Bi)|o < evmnl|A|| p, where |A|lp:= [> A%
\ i

Proof. Suppose that ||A||g > ey/mn||A||r. (Otherwise the proof is done.) Then 35,7 s.t.

Y Ayl > evmn|Allp

i€S,jeT

Let By = ¢(S,T,c1) be a cut matrix. Then

1A= Bil7 A7 = D (A —a)® — A%
i€S,j€T
= Z (cf —244j¢1)
i€S,j€T
=—2c1 Y Ay+clS|-|T|

i€S,jeT

Denote A(S,T) 1= 3 cs jer Aij- Assume wlog that A(S,T) > 0. (Otherwise we can set c; to be
—c; and A;; to be —A;;.) Set
A(S,T)

1= ——

S| -|T)
Then we have

A2(S,T)  A%(S,T)  A%(S,T)

1A = BillE — 1Al = -2 + =-
" " \SI-1T1 18] - |7 S]]
emn| Al 2
< - = < —€lAl
S| T "

This implies that each step decrease the squared Frobenius norm of the remaining matrix by €2|| A||%.
So the number of steps (the number of cut matrices) is at most 1/€>. O

When A is the adjacency matrix of a graph, then m = n, ||A||% is the number of edges and so
the bound above says that the error in cut norm is at most en?, i.e., every cut is approximated to
within en? additive error.



