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1 Block Models
The motivation for this section is to define a random graph model that can approximate different
properties of real-world graphs.

Consider the random graph model G(n, p), where each edge is independently present with prob-
ability p. Denote this model [p].

Suppose we want to model a different type of graph; for example, consider a graph G = (V,E)
where V = J ∪C, which connects a job j, to a candidate c if c is qualified for j. In this case, we will
never connect a job to a job or a candidate to a candidate. So, to model this with a random graph,
we might set P (ej,c) = p, while P (ej1,j2) = P (ec1,c2) = 0. Denote this model with the following

matrix:
[
0 p
p 0

]
. This tells us that if one vertex is in group 0 and the other vertex is in group 1, the

probability of an edge between them is p.
In general, suppose that the set of vertices are partitioned into k groups, V = V1 ∪ V2 ∪ . . . Vk.

Say that if v ∈ Vi and u ∈ Vj , P (ev,u) = pi,j ; that is, the edge probability is some number that
depends on the groups that the endpoints belong to. In a similar way, we can denote this model
with a k × k matrix: 

p11 p12 · · · p1k
p21 p22 · · · p2k
· · ·
pk1 pk2 · · · pkk


This graph model is known as a stochastic block model.

2 The Regularity Lemma
The follow lemma shows that for any dense matrix of size n, there exists a block model that approx-
imates it in a specific useful way. Crucially, the number of blocks does not depend on n.

Lemma 1 (Szemerédi’s Regularity Lemma). Let G be a dense graph. Define, for any X,Y ⊂ [n]

d(X,Y ) = e(X,Y )
|X||Y | =

|{eu,v :u∈X,v∈Y }|
|X||Y | . For any ϵ > 0, ∃k = k(ϵ), and ∃ a partition V = V0∪V1∪· · ·∪Vk

with the following sizes:
|V0| < ϵn, |V1| = |V2| = · · · = |Vk|

such that the following holds: For all but ϵk2 pairs (i, j) with 1 ≤ i, j ≤ k (i = j allowed),

∀X ⊂ Vi, Y ⊂ Vj with |X|, |Y | > ϵ|Vi|, |d(X,Y )− d(Vi, Vj)| > ϵ

The lemma has a lot of pieces, but essentially it makes the following promise: it is possible to
divide V into a finite (in n) number of groups such that {Vi} approximate the quantity d(X,Y )
for any subset of the groups. Preserving this quantity turns out to help for preserving many other
graph properties as well - for example, it approximately preserves all cuts in the graph.

A downside of this lemma is that the constant k is a very large function of ϵ - it is proportional
to a tower function of height O(1/ϵ). The following lemma weakens the result slightly, but gives a
much better dependence on ϵ.

First, we define a useful metric for analyzing matrices: the cut norm.
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Definition 2 (Cut Norm). For any A ∈ Rn,

∥A∥□ = max
S,T⊂[n]

∣∣∣∣∣∣
∑

i∈S,j∈T

Aij

∣∣∣∣∣∣
If ∥A−B∥□ ≤ ϵn2, we say that B ϵ-approximates A in cut norm.

Definition 3 (Cut Matrix). A cut matrix is a matrix B ∈ Rm×n where there exists a contiguous
submatrix, with indices S ⊂ [m], T ⊂ [n], such that Bij = c1,∀i ∈ S, j ∈ T , and Bij is zero
everywhere else. We denote B = c(S, T, c1). That is, B is of the following form:

B = c1

0 0 0
0 1 0
0 0 0


where the 1 is a rectangle of 1’s and the rest of the matrix has all zero entries.

Lemma 4 (Weak Regularity Lemma). ∀A ∈ Rm×n,∀ϵ > 0, ∃ a set of cut matrices B1, B2, . . . , Bk,
where k ≤ 1/ϵ2 such that:

∥A− (B1 +B2 + · · ·+Bk)∥□ ≤ ϵ
√
mn∥A∥F , where ∥A∥F :=

√∑
i,j

A2
ij

Proof. Suppose that ∥A∥□ > ϵ
√
mn∥A∥F . (Otherwise the proof is done.) Then ∃S, T s.t.

|
∑

i∈S,j∈T

Aij | > ϵ
√
mn∥A∥F

Let B1 = c(S, T, c1) be a cut matrix. Then

∥A−B1∥2F − ∥A∥2F =
∑

i∈S,j∈T

(Aij − c1)
2 −A2

ij

=
∑

i∈S,j∈T

(c21 − 2Aijc1)

=− 2c1
∑

i∈S,j∈T

Aij + c21|S| · |T |

Denote A(S, T ) :=
∑

i∈S,j∈T Aij . Assume wlog that A(S, T ) > 0. (Otherwise we can set c1 to be
−c1 and Aij to be −Aij .) Set

c1 =
A(S, T )

|S| · |T |
.

Then we have

∥A−B1∥2F − ∥A∥2F =− 2
A2(S, T )

|S| · |T |
+

A2(S, T )

|S| · |T |
= −A2(S, T )

|S| · |T |

≤ − ϵ2mn∥A∥2F
|S| · |T |

≤ −ϵ2∥A∥2F

This implies that each step decrease the squared Frobenius norm of the remaining matrix by ϵ2∥A∥2F .
So the number of steps (the number of cut matrices) is at most 1/ϵ2.

When A is the adjacency matrix of a graph, then m = n, ∥A∥2F is the number of edges and so
the bound above says that the error in cut norm is at most ϵn2, i.e., every cut is approximated to
within ϵn2 additive error.
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