
CS 4510: Automata and Complexity Fall 2019

Lecture 19: SAT is NP-complete

November 11, 2019
Lecturer: Santosh Vempala Scribe: Aditi Laddha

19.1 Introduction

Definition 19.1 (NP) There are 2 equivalent definitions of the class NP:

• A language L ∈ NP if there exists a nondeterministic Turing machine, M that decides L in nk time,
i.e., for every string x with |x| = n, if x ∈ L, then on input x, M has at least one computation path
that accepts x in at most nk steps and if x /∈ L, then M rejects x on all compuation paths in nk steps.

• A language L ∈ NP if there exists a polynomial time verifier for L. A verifier for L is a deterministic
Turing machine M such that L = {x | M accepts 〈x, c〉 for a some string c}. A polynomial time
verifier runs in time polynomial in |x|.

Definition 19.2 (Polynomial Time reductions) A language A is said to polynomial time reducible to a
language B or A ≤P B if there exists a polynomial time computable function f : Σ∗ → Σ∗ such that ∀x ∈ Σ∗,

x ∈ A⇐⇒ f(x) ∈ B

Definition 19.3 (NP-hard) A language L is called NP-hard if ∀L′ ∈ NP, L′ ≤P L.

Definition 19.4 (NP-complete) A language L is NP-complete if

• L is in NP, and

• L is NP-hard.

19.2 Cook-Levin Theorem

Theorem 19.5 (Cook-Levin Theorem) SAT is NP-complete.

Proof: SAT is in NP. Given a formula φ, a NTM can nondeterministically guess an assignment for φ and
accept if the assignment satisfies φ in time polynomial in size of φ.
Consider L ∈ NP. Let M = (Q, q0,Σ,Γ, qA, δ) be the nondeterministic Turing Machine that accepts L in nk

time. Let C = Σ∪Γ∪# where {#} is the blank symbol. We can encode the configurations of a TM on the
tape by wherever the head is on the tape, write the current state to the left.

19-1

Lecture 19: SAT is NP-complete 19-2

Figure 19.1: An nk × nk table of configurations.

This gives us a table, T of the machine execution on x. Let T (i, j) be the symbol in the ith row and jth
column of T . The variables of the formula are

Xi,j,c =

{
1 if T (i, j) = s

0 otherwise

where i, j ∈ {1, . . . nk} and c ∈ C. We want a formula φ such that a satisfying assignment of φ corresponds
to an accepting table of M . So, the formula needs to check four things:

1. Every cell is occupied by exactly one symbol. For cell i, j we need

φi,j =

(∨
s∈C

Xi,j,c

)
∧

 ∧
s,s′∈C,s6=s′

(Xi,j,s ∨Xi,j,s′)

We want this to be true for every cell of the table which gives the formula:

φcell =
∧

1≤i,j≤nk

φi,j

2. Starting configuration: The first row of the table must correspond to the start configuration of M on
x, i.e., C0 = q0x1x2 . . . xn## . . .#. Let ci denote the ith symbol of C0, then

φstart = X1,1,q0 ∧X1,2,c2 . . . ∧X1,nk,c
nk

3. M reaches qA on x, so at least one of the cell must contain qA:

φaccept =
∨

1≤i,j≤nk

Xi,j,qA

4. The transitions are valid so that each row of the table corresponds to a configuration that follows from
the previous row’s configuration following the transition function δ. We can check this by checking the
symbols in a 6× 6 window containing the state as follows:
Right move: Consider a transtion δ(q, a) = (q′, a′, R). We can encode it as:

Lecture 19: SAT is NP-complete 19-3

b q a
b a′ q′

φq,a = Xi,j,b ∧Xi,j+1,q ∧Xi,j+2,a ⇒ Xi+1,j,b ∧Xi+1,j+1,a′ ∧Xi+1,j+2,q′

Xi,j,b ∧Xi,j+1,q ∧Xi,j+2,a ∨ (Xi+1,j,b ∧Xi+1,j+1,a′ ∧Xi+1,j+2,q′)(
Xi,j,b ∧Xi,j+1,q ∧Xi,j+2,a

)
∨ (Xi+1,j,b ∧Xi+1,j+1,a′ ∧Xi+1,j+2,q′)

Left move: Consider a transtion δ(q, a) = (q′, a′, L). We can encode it as:

b q a
q′ b a′

φq,a = Xi,j,q ∧Xi,j+1,a ∧Xi,j+2,b ⇒ Xi+1,j,q′ ∧Xi+1,j+1,b ∧Xi+1,j+2,a′

Xi,j,q ∧Xi,j+1,a ∧Xi,j+2,b ∨ (Xi+1,j,q′ ∧Xi+1,j+1,b ∧Xi+1,j+2,a′)(
Xi,j,q ∧Xi,j+1,a ∧Xi,j+2,b

)
∨ (Xi+1,j,q′ ∧Xi+1,j+1,b ∧Xi+1,j+2,a′)

Since M is nondeterministic, δ(q, a) might be a set. Consider

δ(q, a) = {(qi, ai, L) : i ∈ L} ∪ {(qi, ai, R) : i ∈ R},

then φ(q,a) =

Xi,j,b ∧Xi,j+1,q ∧Xi,j+2,a ⇒
∨
l∈L

(Xi+1,j,ql ∧Xi+1,j+1,b ∧Xi+1,j+2,al)
∨
r∈R

(Xi+1,j,b ∧Xi+1,j+1,ar ∧Xi+1,j+2,qr)

Every 6× 6 window in the table must be legal. This gives the formula:

φtransition =
∧

1≤i,j≤nk

∧
γ∈δ

φγ

Since we want all four conditions to be true, the overall formula is

φ(x) = φcell ∧ φstart ∧ φaccept ∧ φtransition

and
x ∈ L⇐⇒ φ(x) ∈ SAT

If x ∈ L with |x| = n, then on input x, M has at least one computation path that accepts x in at most
nk steps(and hence the machine uses at most nk tape cells) and we can fill the table with the configurations
of M from this accepting path and set the corresponding variables to true. If there exists a satisfying
assignment for φ(x) then it must correspond to a valid sequence of configurations of M with input x. Also,
these configurations must lead to the accepting state qA and hence x ∈ L.

19.2.1 Complexity

The table has nk × nk cells and each cell has |C| variables associated with it, where C is a constant that
depends on the machine M and not on the length of the input n. So, the number of variables in φ is O(n2k).
We analyze the size of each formula:

• φcell contains a fixed formula for each cell, and the size of this formula depends on |C|. So, size of φcell
is O(n2k).

Lecture 19: SAT is NP-complete 19-4

• φstart contains a single clause with nk variables.

• φaccept contains one variable for each cell of the table, so its size is O(n2k)

• φtransition contains a formula whose size is fixed and depends only on δ(the transition function of M)
for each cell of the table. So, size of φtransition is O(n2k).

So, the total size of the formula is O(n2k). Hence, this is a polynomial time reduction.

19.3 References

• Ch 7.4 NP-Completeness, “Introduction to the Theory of Computation”

	Introduction
	Cook-Levin Theorem
	Complexity

	References

