
CS 4510: Automata and Complexity Fall 2019

Lecture 16: Space and Time Hierarchies

October 30, 2019
Lecturer: Santosh Vempala Scribe: Aditi Laddha

16.1 Introduction

16.1.1 Asysmptotic Notations

Definition 16.1 (Big O notation) Let f, g : N→ R+ be functions. Then g(n) = O(f(n)) if ∃n0 ∈ N, c >
0 such that ∀n ≥ n0, g(n) ≤ cf(n).

Intuitively, if g(n) is O(f(n)) then g(n) grows no faster than f(n).

Definition 16.2 (Small o notation) Let f, g : N → R+ be functions. Then g(n) = o(f(n)) if ∀c >
0,∃n0 ∈ N such that ∀n ≥ n0, g(n) ≤ cf(n).

Intuitively, if g(n) is o(f(n)) then g(n) grows slower than f(n). Some examples demonstrating this,

• 1000
√
n = O(n

100), 1000
√
n = o(n

100)

• n + 107 = O(10n)

• n + 107 6= o(10n) because for c = 1/10, n + 107

• n

log(n)
= o(n)

• n0.99 = o(n)

• log(n) = o(log2(n)), log1 .99(n) = o(log2(n))

• n−
√
n = O(n) but n−

√
n 6= o(n)

16.1.2 Space and Time

Definition 16.3 (SPACE) A language L is said to belong to class SPACE(s(n)) if there exists a TM M
that decides L and for input strings of size n, L uses O(s(n)) space.

Note that we do not count input cells in the space used by a TM.

Definition 16.4 (TIME) A language L is said to belong to class TIME(t(n)) if there exists a TM M that
decides L and for input strings of size n, L runs for O(t(n)) steps.

Definition 16.5 (Space-constructible) A function s : N → N is called space-constructible if s(n) ≥
log2(n) and there exists a Turing machine that on input 1n outputs s(n) in binary while using O(s(n)) space.

Definition 16.6 (Time-constructible) A function t : N→ N is called time-constructible if t(n) ≥ n and
there exists a Turing machine which on input 1n outputs t(n) in binary while using only O(t(n)) steps.

Definition 16.7 (Configuration of a TM) The configuration of a Turing machine M can be completely
specified by the 3-tuple

〈Tape Content, State, Head Position〉

16-1

Lecture 16: Space and Time Hierarchies 16-2

If we know that a TM M uses at most s(n) space on input of size n, then the number of possible configurations
of M while computing on an input of size n is at most |Γ|s(n)) · |Q| · (s(n) +n) = 2O(s(n)) as every cell on the
tape can have one of Γ tape symbols and the head can be positioned on the input or any of the s(n) cells
used by M .
Question: Does more space or more time give TM more power, i.e., the ability to decide more languages?

16.2 Space Hierarchy Theorem

Theorem 16.8 (Space hierarchy theorem) For any space-constructible function s(n), there exists a lan-
guage L that can be decided by a TM using O(s(n)) space and cannot be decided by any TM using o(s(n))
space. In other words,

∃L such that L ∈ SPACE(O(s(n))) and L /∈ SPACE(o(s(n)))

Proof: Let L be the language accepted by the following Turing machine D:
On input x = (〈M〉, 1k) with n = |〈M〉, 1k|:

1. Compute s(n) using space contructibility and mark s(n) space on the tape

2. Keep a count of the number of steps taken by D

3. If M is not a valid TM description or input is not in the prescribed format, REJECT

4. Run M on input (〈M〉, 1k)

5. If space used exceeds s(n), REJECT

6. If time exceeds Cs(n), REJECT where C ≤ |Γ| · |QM |

7. If M accepts, REJECT

8. If M rejects, ACCEPT

Keeping a counter for number of steps takes log(Cs(n)) = O(s(n)) space. Step (6) ensures that D terminates
on all inputs. It is to avoid the case when M does not halt on input x. We claim that the language accepted
by D is the required language.

Claim 16.9 L can be decided using O(s(n)) space.

D decides L and uses O(s(n)) space and always terminates.

Claim 16.10 No TM using o(s(n)) space can decide L.

Suppose there is a TM, ML that decides L using g(n) = o(s(n)) space. Since ML uses o(s(n)) space, there
exists some large enough k such that g(|〈ML〉, 1k|) ≤ s(|〈ML〉, 1k|) and ML uses less than s(n) space. Run
D on (〈ML〉, 1k). Since ML uses o(s(n)) space D can simulate it and will not stop at step (5) or (6). If
ML accepts (〈ML〉, 1k), D rejects it and if ML rejects (〈ML〉, 1k), D accepts it. D and ML decide the same
language but give different output on input (〈ML〉, 1k), a contradiction.

We don’t know whether ∃L such that L ∈ TIME(O(s(n)) andL /∈ TIME(o(s(n)))? Why does the same
proof not work for time? Where should we keep the timer? Space is not bounded. Keep the timer with you
logtn overhead

Theorem 16.11 (Time hierarchy theorem) For any time-constructible function s(n), there exists a lan-

guage L that can be decided by a TM using O(t(n)) time and cannot be decided by any TM using o

(
t(n)

log(t(n))

)
time. In other words,

∃L such that L ∈ TIME(O(t(n))) and L /∈ TIME

(
o

(
t(n)

log(t(n))

))
For proof, see Theorem 9.10 in “Introduction to the Theory of Computation”.

Lecture 16: Space and Time Hierarchies 16-3

16.3 References

• Ch 7.1 Measuring Complexity, “Introduction to the Theory of Computation”

• Ch 9.1 Hierarchy Theorems, “Introduction to the Theory of Computation”

	Introduction
	Asysmptotic Notations
	Space and Time

	Space Hierarchy Theorem
	References

