
CS 4510: Automata and Complexity Fall 2019

Lecture 15: Time and Space

October 28, 2019
Lecturer: Santosh Vempala Scribe: Aditi Laddha

15.1 Introduction

Church-Turing thesis: Any computable function is computable by a Turing machine.
Note that it is a hypothesis.
Question: What are the resources available for computation?

• Space

• Time

• Random Bits

• Non-determinism

15.1.1 Space and Time

Definition 15.1 (NTIME) A language L is said to belong to class NTIME(t(n)) if there exists a NTM
M that decides L and for input strings of size n, L runs for O(t(n)) steps.

Definition 15.2 (DTIME) A language L is said to belong to class DTIME(t(n)) if there exists a TM M
that decides L and for input strings of size n, L runs for O(t(n)) steps.

Definition 15.3 (NSPACE) A language L is said to belong to class NSPACE(s(n)) if there exists a NTM
M that decides L and for input strings of size n, L uses O(s(n)) additional space.

Definition 15.4 (DSPACE) A language L is said to belong to class DSPACE(s(n)) if there exists a TM
M that decides L and for input strings of size n, L uses O(s(n)) additional space.

Note that we do not count input cells in the space used by a TM.

Definition 15.5 (Space-constructible) A function s : N → N is called space-constructible if s(n) ≥
log2(n) and there exists a Turing machine that on input 1n outputs s(n) in binary while using O(s(n)) space.

Definition 15.6 (Configuration of a TM) The configuration of a Turing machine M can be completely
specified by the 3-tuple

〈Tape Content, State, Head Position〉

If we know that a TM M never uses more than s(n) on input of size n, then the number of possible
configuration of M while computing on x is at most |Γ|s(n)) · |Q| · (s(n) + n) as every cell on the tape can
have one of Γ tape symbols and the head can be positioned on the input or any of the s(n) cells used by M .

15-1

Lecture 15: Time and Space 15-2

15.2 Space complexity and Savitch’s Theorem

Theorem 15.7 NTIME(t(n)) ⊆ DTIME(2O(t(n))).

Proof: Consider a language L ∈ NTIME(t(n)) and let N be a NTM that decides L in O(s(n)) space. On
input x with |x| = n, let Tx be the computation tree produced when N computes on x. If x ∈ L, then at
depth t(n) at least one of the nodes is a leaf with state qaccept and if x /∈ L, then at depth t(n), all the nodes
must be leaves with states qreject. The branching factor of this tree is b = |Q| · |Σ| · 2, a constant. Hence, T
has at most bt(n) nodes. Consider a TM M which performs BFS on this tree starting from q0 and accepts if
it reaches a configuration with state qaccept and rejects otherwise. M decides L is bt(n) = 2O(t(n)) time.
Note that performing DFS would not work because even if N accepts x, there might be a non-deterministic
computation path of unbounded depth.

Lemma 15.8 DTIME(t(n)) ⊆ DSPACE(t(n)).

Because a TM cannot use more space than its run-time as at each step the head moves only one step to the
left or the right.

Theorem 15.9 NSPACE(s(n)) ⊆ DTIME(2O(s(n))) ⊆ DSPACE(2O(s(n))).

Proof: Consider L ∈ NSPACEs(n) and let M be a NTM that decides L in O(s(n)) space. Total number of
configurations of with s(n) space is

configurations = |Γ|s(n)) · |Q| · (s(n) + n)

= 2s(n) log2(|Γ|)+log2(|Q|)+log2(s(n)+n)

= 2O(s(n)+log2(s(n)+n))

= 2O(s(n))

We will construct a deterministic TM D that decides L in O(2O(s(n))) space. For an input x of length n,
consider a directed graph Gx = (V,E) where V = set of configurations of M on input x and there is an edge
between configurations Ci, Cj ∈ V if M can go from configuration Ci to configuration Cj in one step. Then
x is accepted by M if and only if there exists a path in Gx from C0 to Cappect. We can check the existence
of such a path in O(|V |) time by running BFS.

Theorem 15.10 (Savitch’s theorem) For a function f : N→ R+, where f(n) ≥ n,

NSPACE(s(n)) ⊆ DSPACE((s(n))2)

Consider L ∈ NSPACEs(n) and let M be a NTM that decides L in O(s(n)) space. We will construct a
deterministic TM D that decides L in O((s(n))2) space. For an input x of length n, consider a directed graph
Gx = (V,E) where V = set of configurations of M on input x and there is an edge between configurations
Ci, Cj ∈ V if M can go from configuration Ci to configuration Cj in one step. Without loss of generality,
we can assume that the TM M on reaching accept state write 0 on each cell of the tape and moves to head
to the leftmost cell. Let’s call this configuration Caccept. So every time M is in state qaccept, it goes to
configuration Caccept. Then x is accepted by M if and only if there exists a path in Gx from C0 to Cappect.

Given a directed graph G = (V,E) with n vertices and s, t ∈ V , algorithm 1 can decide whether there
exists a path from s to t of length k in O(log2(n) log2(k)) space.
So, in Gx, |V | = 2O(s(n)). Let N = |V |. The maximum length of path between C0 and Caccpet is N . So, the
space needed to decide whether there exists a path from C0 to Caccpet is

= log2(N) · log2(k)

= (log2(N))2

= (O(s(n)))2

Lecture 15: Time and Space 15-3

15.2.1 Reachability

Given a directed graph G = (V,E) with n vertices and s, t ∈ V , the following algorithm decides whether
there exists a path from s to t of length at most k in G.

Algorithm 1: PATH(u, v, k)

1 if u = v OR {(u, v) ∈ E ∧ k ≥ 1} then
2 return YES
3 else
4 for w ∈ V \{u, v} do
5 if PATH(u,w, bk2 c) AND PATH(w, v, dk2 e) then
6 return YES

7 return NO

Let |V | = n, then we can store the current intermediate vertex w with log2(n) bit. So, the space needed
by the algorithm is

= log2(n) · depth of recursion

= log2(n) · log2(k)

15.3 References

• Ch 8.1 Savitch’s Theorem, “Introduction to the Theory of Computation”

	Introduction
	Space and Time

	Space complexity and Savitch's Theorem
	Reachability

	References

