CS 4510: Automata and Complexity Fall 2019

Lecture 15: Time and Space

October 28, 2019

Lecturer: Santosh Vempala Scribe: Aditi Laddha

15.1 Introduction

Church-Turing thesis: Any computable function is computable by a Turing machine.
Note that it is a hypothesis.
Question: What are the resources available for computation?

e Space
e Time
e Random Bits

e Non-determinism

15.1.1 Space and Time

Definition 15.1 (NTIME) A language L is said to belong to class NTIME(t(n)) if there exists a NTM
M that decides L and for input strings of size n, L runs for O(t(n)) steps.

Definition 15.2 (DTIME) A language L is said to belong to class DTIME(t(n)) if there exists a TM M
that decides L and for input strings of size n, L runs for O(t(n)) steps.

Definition 15.3 (NSPACE) A language L is said to belong to class NSPACE(s(n)) if there exists a NTM
M that decides L and for input strings of size n, L uses O(s(n)) additional space.

Definition 15.4 (DSPACE) A language L is said to belong to class DSPACE(s(n)) if there exists a TM
M that decides L and for input strings of size n, L uses O(s(n)) additional space.

Note that we do not count input cells in the space used by a TM.

Definition 15.5 (Space-constructible) A function s : N — N is called space-constructible if s(n) >
logy(n) and there exists a Turing machine that on input 1™ outputs s(n) in binary while using O(s(n)) space.

Definition 15.6 (Configuration of a TM) The configuration of a Turing machine M can be completely
specified by the 3-tuple
(Tape Content, State, Head Position)

If we know that a TM M never uses more than s(n) on input of size n, then the number of possible
configuration of M while computing on z is at most [I'|*(™) - |Q| - (s(n) + n) as every cell on the tape can
have one of I" tape symbols and the head can be positioned on the input or any of the s(n) cells used by M.

15-1

Lecture 15: Time and Space 15-2

15.2 Space complexity and Savitch’s Theorem

Theorem 15.7 NTIME(#(n)) € DTIME(20((")),

Proof: Consider a language L € NTIME(¢(n)) and let N be a NTM that decides L in O(s(n)) space. On
input x with |z| = n, let T, be the computation tree produced when N computes on x. If x € L, then at
depth t(n) at least one of the nodes is a leaf with state ggecepr and if ¢ ¢ L, then at depth ¢(n), all the nodes
must be leaves with states greject. The branching factor of this tree is b = |Q| - |X]| - 2, a constant. Hence, T
has at most b*(™ nodes. Consider a TM M which performs BFS on this tree starting from g and accepts if
it reaches a configuration with state ggcceps and rejects otherwise. M decides L is ptn) = 20(t(") time. m
Note that performing DFS would not work because even if N accepts x, there might be a non-deterministic
computation path of unbounded depth.

Lemma 15.8 DTIME(¢(n)) C DSPACE(t(n)).

Because a T'M cannot use more space than its run-time as at each step the head moves only one step to the
left or the right.

Theorem 15.9 NSPACE(s(n)) € DTIME(29(:(")) C DSPACE(29(:(")).

Proof: Consider L € NSPACEs(n) and let M be a NTM that decides L in O(s(n)) space. Total number of
configurations of with s(n) space is

configurations = [L|*™) . |Q| - (s(n) + n)
— 95(n) log,y (IT')+log, (|Q)+1ogy (s(rn)+n)
— 20(5(n)+10g2(s(n)+n))

— 90(s(n)

We will construct a deterministic TM D that decides L in 0(20(5("))) space. For an input « of length n,
consider a directed graph G, = (V, E) where V' = set of configurations of M on input z and there is an edge
between configurations C;, C; € V' if M can go from configuration C; to configuration C; in one step. Then
x is accepted by M if and only if there exists a path in G from Cy to Cyppect- We can check the existence
of such a path in O(]V]) time by running BFS. [|

Theorem 15.10 (Savitch’s theorem) For a function f : N — RT, where f(n) > n,

NSPACE(s(n)) € DSPACE((s(n))?)

Consider L € NSPACEs(n) and let M be a NTM that decides L in O(s(n)) space. We will construct a
deterministic TM D that decides L in O((s(n))?) space. For an input z of length n, consider a directed graph
G, = (V, E) where V = set of configurations of M on input x and there is an edge between configurations
C;,C; € V if M can go from configuration C; to configuration C; in one step. Without loss of generality,
we can assume that the TM M on reaching accept state write 0 on each cell of the tape and moves to head
to the leftmost cell. Let’s call this configuration Cyeeept. S0 every time M is in state ggecept, it goes to
configuration Coyccept- Then x is accepted by M if and only if there exists a path in G, from Cj to Cyppect-

Given a directed graph G = (V, E) with n vertices and s,t € V, algorithm 1 can decide whether there
exists a path from s to ¢ of length k in O(logy(n)log,(k)) space.
So, in G, |V| = 20(s(n) Let N = |V]. The maximum length of path between Cy and Caceper is N. So, the
space needed to decide whether there exists a path from Cy to Coeepet is
= log,(NN) - logy (k)
= (logy(N))?
= (O(s(n)))?

Lecture 15: Time and Space 15-3

15.2.1 Reachability

Given a directed graph G = (V, E) with n vertices and s,t € V, the following algorithm decides whether
there exists a path from s to ¢ of length at most & in G.
Algorithm 1: PATH(u, v, k)
if u=v OR {(u,v) € EAk > 1} then
‘ return YES
else
for w € V\{u,v} do
L if PATH(u, w, |£]) AND PATH(w, v, [£]) then

o U~ W N e

L return YES

return NO

~

Let |V| = n, then we can store the current intermediate vertex w with log,(n) bit. So, the space needed
by the algorithm is

= log,(n) - depth of recursion

— log,(n) - log, (k)

15.3 References

e Ch 8.1 Savitch’s Theorem, “Introduction to the Theory of Computation”

	Introduction
	Space and Time

	Space complexity and Savitch's Theorem
	Reachability

	References

