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15.1 Introduction

Church-Turing thesis: Any computable function is computable by a Turing machine.
Note that it is a hypothesis.
Question: What are the resources available for computation?

e Space
e Time
e Random Bits

e Non-determinism

15.1.1 Space and Time

Definition 15.1 (NTIME) A language L is said to belong to class NTIME(t(n)) if there exists a NTM
M that decides L and for input strings of size n, L runs for O(t(n)) steps.

Definition 15.2 (DTIME) A language L is said to belong to class DTIME(t(n)) if there exists a TM M
that decides L and for input strings of size n, L runs for O(t(n)) steps.

Definition 15.3 (NSPACE) A language L is said to belong to class NSPACE(s(n)) if there exists a NTM
M that decides L and for input strings of size n, L uses O(s(n)) additional space.

Definition 15.4 (DSPACE) A language L is said to belong to class DSPACE(s(n)) if there exists a TM
M that decides L and for input strings of size n, L uses O(s(n)) additional space.

Note that we do not count input cells in the space used by a TM.

Definition 15.5 (Space-constructible) A function s : N — N is called space-constructible if s(n) >
logy(n) and there exists a Turing machine that on input 1™ outputs s(n) in binary while using O(s(n)) space.

Definition 15.6 (Configuration of a TM) The configuration of a Turing machine M can be completely
specified by the 3-tuple
(Tape Content, State, Head Position)

If we know that a TM M never uses more than s(n) on input of size n, then the number of possible
configuration of M while computing on z is at most [I'|*(™) - |Q| - (s(n) + n) as every cell on the tape can
have one of I" tape symbols and the head can be positioned on the input or any of the s(n) cells used by M.
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15.2 Space complexity and Savitch’s Theorem

Theorem 15.7 NTIME(#(n)) € DTIME(20((")),

Proof: Consider a language L € NTIME(¢(n)) and let N be a NTM that decides L in O(s(n)) space. On
input x with |z| = n, let T, be the computation tree produced when N computes on x. If x € L, then at
depth t(n) at least one of the nodes is a leaf with state ggecepr and if ¢ ¢ L, then at depth ¢(n), all the nodes
must be leaves with states greject. The branching factor of this tree is b = |Q| - |X]| - 2, a constant. Hence, T
has at most b*(™ nodes. Consider a TM M which performs BFS on this tree starting from g and accepts if
it reaches a configuration with state ggcceps and rejects otherwise. M decides L is ptn) = 20(t(") time. m
Note that performing DFS would not work because even if N accepts x, there might be a non-deterministic
computation path of unbounded depth.

Lemma 15.8 DTIME(¢(n)) C DSPACE(t(n)).

Because a T'M cannot use more space than its run-time as at each step the head moves only one step to the
left or the right.

Theorem 15.9 NSPACE(s(n)) € DTIME(29(:(")) C DSPACE(29(:(")).

Proof: Consider L € NSPACEs(n) and let M be a NTM that decides L in O(s(n)) space. Total number of
configurations of with s(n) space is

# configurations = [L|*™) . |Q| - (s(n) + n)
— 95(n) log,y (IT')+log, (|Q)+1ogy (s(rn)+n)
— 20(5(n)+10g2(s(n)+n))

— 90(s(n)

We will construct a deterministic TM D that decides L in 0(20(5("))) space. For an input « of length n,
consider a directed graph G, = (V, E) where V' = set of configurations of M on input z and there is an edge
between configurations C;, C; € V' if M can go from configuration C; to configuration C; in one step. Then
x is accepted by M if and only if there exists a path in G from Cy to Cyppect- We can check the existence
of such a path in O(]V]) time by running BFS. [ |

Theorem 15.10 (Savitch’s theorem) For a function f : N — RT, where f(n) > n,

NSPACE(s(n)) € DSPACE((s(n))?)

Consider L € NSPACEs(n) and let M be a NTM that decides L in O(s(n)) space. We will construct a
deterministic TM D that decides L in O((s(n))?) space. For an input z of length n, consider a directed graph
G, = (V, E) where V = set of configurations of M on input x and there is an edge between configurations
C;,C; € V if M can go from configuration C; to configuration C; in one step. Without loss of generality,
we can assume that the TM M on reaching accept state write 0 on each cell of the tape and moves to head
to the leftmost cell. Let’s call this configuration Cyeeept. S0 every time M is in state ggecept, it goes to
configuration Coyccept- Then x is accepted by M if and only if there exists a path in G, from Cj to Cyppect-

Given a directed graph G = (V, E) with n vertices and s,t € V, algorithm 1 can decide whether there
exists a path from s to ¢ of length k in O(logy(n)log,(k)) space.
So, in G, |V| = 20(s(n)  Let N = |V]. The maximum length of path between Cy and Caceper is N. So, the
space needed to decide whether there exists a path from Cy to Coeepet is
= log,(NN) - logy (k)
= (logy(N))?
= (O(s(n)))?
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15.2.1 Reachability

Given a directed graph G = (V, E) with n vertices and s,t € V, the following algorithm decides whether
there exists a path from s to ¢ of length at most & in G.
Algorithm 1: PATH(u, v, k)
if u=v OR {(u,v) € EAk > 1} then
‘ return YES
else
for w € V\{u,v} do
L if PATH(u, w, |£]) AND PATH(w, v, [£]) then

o U~ W N e

L return YES

return NO

~

Let |V| = n, then we can store the current intermediate vertex w with log,(n) bit. So, the space needed
by the algorithm is

= log,(n) - depth of recursion

— log,(n) - log, (k)

15.3 References

e Ch 8.1 Savitch’s Theorem, “Introduction to the Theory of Computation”
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